Summary

Metabolism of ¹²³I-FP-CIT in Humans

Akihiro Tanaka*, Kyoko Okano*, Hiroshi Tamagami*, Hiroki Matsumoto*, Shigeyuki Tanifuji*, Yoshihiro Yamamichi*, Hirokatsu Yoshimura*, Makoto Kato-Azuma*, Katsuhiro Takano**, Kaname Matsumura** and Kan Takeda**

> *Research Center, Nihon Medi-Physics Co., Ltd., Chiba **Department of Radiology, Mie University School of Medicine

The metabolism of *N*-(3-fluoropropyl)-2 β carbomethoxy-3 β -(4-iodophenyl)nortropane (¹²³I) (¹²³I-FP-CIT) in healthy humans was studied. Plasma and urine samples, obtained after i.v. administration of ¹²³I-FP-CIT, were analyzed using the two-dimensional thin-layer chromatography technique. Eleven radiochemical components were detected in both plasma and urine, and four of them were the parent ¹²³I-FP-CIT and its metabolites, *N*-(3-fluoropropyl)-2 β -carboxy-3 β -(4-iodophenyl)nortropane (¹²³I) (¹²³Iacid), 2 β -carboxy-3 β -(4-iodophenyl)nortropane (¹²³I) (¹²³I-nor-acid) and 2 β -carbomethoxy-3 β -(4-iodophenyl)nortropane (¹²³I) (¹²³I-nor-CIT). These four identified radiochemical components occupied about 80% or more in ratio of the radiochemical components in the plasma and urine. In the metabolites of ¹²³I-FP-CIT, the high polar metabolites—¹²³I-acid and ¹²³Inor-acid—were found to be the major components, while lipophilic ¹²³I-nor-CIT was a minor component. Free iodide (¹²³I⁻) was not found in the plasma or urine. Thus, the main metabolic reactions which ¹²³I-FP-CIT undergoes in humans seem to be hydrolysis of the ester bond and *N*-dealkylation. *In vivo* deiodination of ¹²³I-FP-CIT was found to be minimum. Current results suggest that the metabolites of ¹²³I-FP-CIT hardly influence evaluation of the dopamine transporter in the human brain.

Key words: ¹²³I-FP-CIT, Metabolism, Human.