アルツハイマー型老年痴呆における
局所脳循環の左右差について
——123I-IMP SPECTによる検討——

新井 久之* 羽生 春夫* 小林 康孝* 羽田野展由*
勝沼 英実* 鈴木 孝成** 綱野 三郎**

要旨　アルツハイマー型老年痴呆 (SDAT) 患者 22例および健常高齢者 18例に 123I-IMP SPECTを実施し、Asymmetry Index (AI)を算出し脳血流の左右差に関して検討を加えた。

左右差を認めた症例の部位別頻度は Parietal (68.2%)、次いで Middle Frontal (63.6%) にて高く、Occipitalや Basal Ganglia では認められなかった。左右差の大きさは Parietal (AI = 5.77)、次いで Temporal (5.31)にて大きく、Occipital、Cerebellum では有意な左右差は見られなかった。大脳半球局所の AI と小脳半球での AI は全体的に負の相関を示し、Lower Frontal では相関係数 $r = -0.76$ と特に強い負の相関が見られた。また、臨床症状と左右差の対比を見ると、Parietal で右側優位な血流の低下症例は視空間認知障害が強く、左側優位な低下症例では言語障害が強く認められた。

123I-IMP SPECT は、SDATにおける脳血流の左右差を評価するのに有用と思われた。

I．緒言
現在多くの不明な病態を残し、不治の『痴呆』とされるアルツハイマー型老年痴呆 (SDAT) は高い関心を集め、多方面から盛んに研究が行われている。脳循環の分野からは、1951年のFreyhanらがによる NaO 法を用いた報告以来、近年の Positron Emission Tomography (PET) や Single Photon Emission CT (SPECT) による三次元的局所脳循環(代謝)測定法を用いた報告に至るまで、方法論の進歩と共に多くの知見が積積されている。

一般的には両側の側頭葉・側頂葉を中心とした瀰漫性の循環(代謝)の低下が知られ1-8, 最近では臨床症状と対比させた左右差に着目したアプローチも散見される9-12。今回著者らは、健常高齢者と SDAT 患者に N-isopropyl-p-[123I]iodoamphetamine (IMP) を用いた SPECTを実施し、大脳半球局所と小脳半球における血流の左右差および両者間の関係について詳細に検討を加えた。

II．対象および方法
対象は、頭部 X-ray CT にて異常のない精神神経学的に正常な健常高齢者 18例 (男性 10名、女性 8名、平均年齢 71.4±9.3 歳) および、臨床症状・Hachinski's ischemic score13・頭部 X-ray CT (一部 MRI を含む) 等より診断されたアルツハイマー型老年痴呆 (SDAT) 患者 22例 (男性 10名、女性 12名、平均年齢 75.5±8.1 歳、平均罹病期 3年) である。

SPECT撮像に当たり、患者に約 222 MBq (6 mCi) の IMPを静脈内投与し、原則として約 20分後に安静閉眼状態のもとで撮像した。SPECT使
用機種は HR コリメータを装着したシーメンス社製 ZLC75 ROTA Camera（対向型）で、6° step, 1 方向 20 秒で 60 方向から、64 × 64 マトリックスにてデータを収集し、その処理には島津社製 SCINTIPAC 2400 を用いた。

関心領域 (ROI) の設定 (Fig. 1) には、OM ライオン平行なスライス厚 6 mm 幅の横断断層像の中から slice I (OM + 24 mm), slice II (OM + 48 mm), slice III (OM + 54 mm), slice IV (OM + 66 mm), slice V (OM + 78 mm) の 5 スライスを選び、slice I に小脳 (CE), slice II に基底核 (BG)・視床 (TH), slice III に lower frontal (LF)・側頭葉 (TE)・後頭葉 (OC)・基底核 (BG)・視床 (TH), slice IV に middle frontal (MF), 側頭頂葉 (TP), slice V に upper frontal (UF), 運動感覚野 (MS), 頭頂葉 (PA) を左右対称部位に定めた。また、mean cerebral hemisphere として大脳半球平均値 (HE)=(LF+MF+UF+TE+PA+TP+OC+MS)/8 を用いた。ROIs の大きさは小脳を 7×7 pixels (4.2 cm × 4.2 cm), 後頭葉を 5×5 pixels (3.0 cm × 3.0 cm) とし、他の部位は 3×3 pixels (1.8 cm × 1.8 cm) とした。

左右差の判定には、半定量的に Asymmetry Index (AI)=[(R－L)/(R+L)]×100 (%) (R: Right side, L: Left side) を用い、関心領域における 1 ビクセル当たりの IMP 集積 count（片側に2箇所ある部位はその平均値）を代入して得られた値が、健常高齢者より算出された AI 価の mean±2SD の範囲外の場合を有意な左右差とした。AI プラストタイプは左側優位な低下型、AI マイナスタイプは右側優位な低下型を示す。

III．結果

1. SDAT 22 症例の AI (Table 1)

SDAT 患者 22 例における大脳半球局所と小脳半球での AI、健常高齢者 18 例における AI の平値と標準偏差を示す。数値に付した右上方の*印は、健常群から得られた mean±2SD の範囲外
Table 1 Asymmetry indices (AIs) of selected ROIs in each patient with senile dementia of Alzheimer type (SDAT)

<table>
<thead>
<tr>
<th>Case No</th>
<th>CE</th>
<th>LF</th>
<th>MF</th>
<th>UF</th>
<th>TE</th>
<th>PA</th>
<th>TP</th>
<th>MS</th>
<th>OC</th>
<th>BG</th>
<th>TH</th>
<th>HE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.98*</td>
<td>-6.37*</td>
<td>-9.69*</td>
<td>-9.65*</td>
<td>0.598</td>
<td>1.82</td>
<td>-7.10*</td>
<td>-3.32</td>
<td>0.309</td>
<td>1.54</td>
<td>-2.35</td>
<td>-3.98*</td>
</tr>
<tr>
<td>2</td>
<td>-7.07*</td>
<td>3.25</td>
<td>1.11</td>
<td>7.29*</td>
<td>9.58*</td>
<td>9.01*</td>
<td>2.82</td>
<td>7.44*</td>
<td>-1.45</td>
<td>2.48</td>
<td>2.48</td>
<td>4.56*</td>
</tr>
<tr>
<td>3</td>
<td>-3.10</td>
<td>4.19</td>
<td>3.24*</td>
<td>0.675</td>
<td>5.48</td>
<td>-0.975</td>
<td>8.96*</td>
<td>0.197</td>
<td>0.07</td>
<td>-1.92</td>
<td>-5.30*</td>
<td>2.61</td>
</tr>
<tr>
<td>4</td>
<td>-2.62</td>
<td>6.15*</td>
<td>7.39*</td>
<td>7.88*</td>
<td>3.53</td>
<td>5.68*</td>
<td>8.27*</td>
<td>1.75</td>
<td>2.23</td>
<td>-0.493</td>
<td>4.07*</td>
<td>5.21*</td>
</tr>
<tr>
<td>5</td>
<td>-3.24</td>
<td>5.79*</td>
<td>3.59*</td>
<td>3.89</td>
<td>9.21*</td>
<td>0.795</td>
<td>2.69</td>
<td>4.48</td>
<td>-1.40</td>
<td>3.31</td>
<td>0.324</td>
<td>3.39*</td>
</tr>
<tr>
<td>6</td>
<td>1.03</td>
<td>3.99</td>
<td>0.360</td>
<td>4.75</td>
<td>-3.16</td>
<td>8.98*</td>
<td>-1.80</td>
<td>4.31</td>
<td>1.50</td>
<td>1.63</td>
<td>-2.23</td>
<td>1.82</td>
</tr>
<tr>
<td>7</td>
<td>1.25</td>
<td>-0.694</td>
<td>-1.63</td>
<td>-4.23</td>
<td>-4.10</td>
<td>-6.71*</td>
<td>-4.30</td>
<td>-2.64</td>
<td>0.218</td>
<td>-7.19</td>
<td>-3.95*</td>
<td>2.95*</td>
</tr>
<tr>
<td>8</td>
<td>-0.476</td>
<td>1.58</td>
<td>2.77</td>
<td>-0.872</td>
<td>-0.753</td>
<td>-3.03*</td>
<td>-7.15*</td>
<td>-0.485</td>
<td>0.278</td>
<td>0.140</td>
<td>-1.55</td>
<td>-0.897</td>
</tr>
<tr>
<td>9</td>
<td>0.351</td>
<td>-2.26</td>
<td>1.32</td>
<td>-2.92</td>
<td>2.56</td>
<td>7.16*</td>
<td>1.17</td>
<td>5.01</td>
<td>-3.34</td>
<td>0.000</td>
<td>0.882</td>
<td>0.870</td>
</tr>
<tr>
<td>10</td>
<td>1.82</td>
<td>-1.96</td>
<td>5.01*</td>
<td>2.58</td>
<td>11.79*</td>
<td>10.10*</td>
<td>5.65*</td>
<td>3.26</td>
<td>-1.41</td>
<td>7.43</td>
<td>5.18*</td>
<td>4.11*</td>
</tr>
<tr>
<td>11</td>
<td>0.387</td>
<td>0.50</td>
<td>-1.29</td>
<td>-3.81</td>
<td>-2.59</td>
<td>-3.54*</td>
<td>-2.87</td>
<td>-1.45</td>
<td>-1.52</td>
<td>2.44</td>
<td>-0.070</td>
<td>-2.04*</td>
</tr>
<tr>
<td>12</td>
<td>-1.34</td>
<td>4.75</td>
<td>0.814</td>
<td>1.58</td>
<td>-0.390</td>
<td>7.62*</td>
<td>-1.01</td>
<td>4.86</td>
<td>-2.27</td>
<td>1.42</td>
<td>-1.80</td>
<td>1.80</td>
</tr>
<tr>
<td>13</td>
<td>2.50</td>
<td>2.90*</td>
<td>9.39*</td>
<td>2.93</td>
<td>7.35</td>
<td>7.45*</td>
<td>6.64*</td>
<td>1.50</td>
<td>3.07</td>
<td>-1.61</td>
<td>6.10*</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.544</td>
<td>1.26</td>
<td>3.55*</td>
<td>2.12</td>
<td>-4.39</td>
<td>-2.34</td>
<td>-1.02</td>
<td>-2.91</td>
<td>-0.567</td>
<td>0.585</td>
<td>3.00</td>
<td>-0.556</td>
</tr>
<tr>
<td>15</td>
<td>1.12</td>
<td>2.18</td>
<td>4.57*</td>
<td>8.44*</td>
<td>4.78</td>
<td>8.24*</td>
<td>0.961</td>
<td>1.68</td>
<td>-0.698</td>
<td>4.64</td>
<td>2.58</td>
<td>3.62*</td>
</tr>
<tr>
<td>16</td>
<td>-0.751</td>
<td>2.28</td>
<td>3.90*</td>
<td>2.93</td>
<td>-3.45</td>
<td>1.95</td>
<td>-1.37</td>
<td>5.73</td>
<td>-0.896</td>
<td>3.42</td>
<td>1.60</td>
<td>1.16</td>
</tr>
<tr>
<td>17</td>
<td>1.71</td>
<td>-7.66*</td>
<td>-12.6*</td>
<td>-11.4*</td>
<td>-11.3*</td>
<td>-10.7*</td>
<td>-6.41*</td>
<td>-2.29</td>
<td>-0.521</td>
<td>-1.78</td>
<td>3.21</td>
<td>-7.50*</td>
</tr>
<tr>
<td>18</td>
<td>2.74</td>
<td>-1.99</td>
<td>-4.58*</td>
<td>-1.67</td>
<td>-3.59</td>
<td>-7.63*</td>
<td>-6.41*</td>
<td>-3.59</td>
<td>-1.31</td>
<td>-2.64</td>
<td>-2.84</td>
<td>3.73*</td>
</tr>
<tr>
<td>19</td>
<td>5.55*</td>
<td>-6.06*</td>
<td>-7.15*</td>
<td>-2.52</td>
<td>-15.2*</td>
<td>-12.2*</td>
<td>-14.9*</td>
<td>-5.21</td>
<td>1.53</td>
<td>-2.82</td>
<td>-1.97</td>
<td>7.30*</td>
</tr>
<tr>
<td>20</td>
<td>-0.808</td>
<td>0.816</td>
<td>0.79</td>
<td>-3.99</td>
<td>-8.65*</td>
<td>-1.60</td>
<td>-1.83</td>
<td>-2.43</td>
<td>-0.238</td>
<td>-7.38</td>
<td>-1.13</td>
<td>-2.04*</td>
</tr>
<tr>
<td>21</td>
<td>0.304</td>
<td>1.48</td>
<td>2.95*</td>
<td>0.118</td>
<td>-3.22</td>
<td>-6.67</td>
<td>10.3</td>
<td>-3.26</td>
<td>0.835</td>
<td>5.71</td>
<td>3.74*</td>
<td>-2.11*</td>
</tr>
<tr>
<td>22</td>
<td>-0.334</td>
<td>-0.578</td>
<td>-6.85*</td>
<td>-5.00</td>
<td>1.55</td>
<td>4.18*</td>
<td>2.71</td>
<td>5.59*</td>
<td>-0.737</td>
<td>-5.71</td>
<td>1.24</td>
<td>0.066</td>
</tr>
</tbody>
</table>

Mean ± SD of 18 control cases

<table>
<thead>
<tr>
<th></th>
<th>CE</th>
<th>LF</th>
<th>MF</th>
<th>UF</th>
<th>TE</th>
<th>PA</th>
<th>TP</th>
<th>MS</th>
<th>OC</th>
<th>BG</th>
<th>TH</th>
<th>HE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-0.426</td>
<td>0.520</td>
<td>0.087</td>
<td>0.805</td>
<td>0.896</td>
<td>1.260</td>
<td>0.393</td>
<td>0.632</td>
<td>-0.111</td>
<td>0.226</td>
<td>-0.741</td>
<td>0.506</td>
</tr>
<tr>
<td>SD</td>
<td>2.02</td>
<td>2.43</td>
<td>1.39</td>
<td>2.71</td>
<td>2.65</td>
<td>1.91</td>
<td>2.51</td>
<td>2.31</td>
<td>1.81</td>
<td>3.82</td>
<td>2.22</td>
<td>1.15</td>
</tr>
</tbody>
</table>

*values more than 2SD from control mean

Table 2 Numbers and percentages of the patients with SDAT showing significant asymmetry

<table>
<thead>
<tr>
<th></th>
<th>CE</th>
<th>LF</th>
<th>MF</th>
<th>UF</th>
<th>TE</th>
<th>PA</th>
<th>TP</th>
<th>MS</th>
<th>OC</th>
<th>BG</th>
<th>TH</th>
<th>HE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI plus type Number</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Percentage (%)</td>
<td>9.1</td>
<td>13.6</td>
<td>40.9</td>
<td>18.2</td>
<td>18.2</td>
<td>40.9</td>
<td>18.2</td>
<td>18.2</td>
<td>0</td>
<td>0</td>
<td>13.6</td>
<td>27.3</td>
</tr>
<tr>
<td>AI minus type Number</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Percentage (%)</td>
<td>4.5</td>
<td>13.6</td>
<td>22.7</td>
<td>9.1</td>
<td>13.6</td>
<td>27.3</td>
<td>22.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.5</td>
<td>36.4</td>
</tr>
<tr>
<td>Total Number</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>6</td>
<td>7</td>
<td>15</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Percentage (%)</td>
<td>13.6</td>
<td>27.3</td>
<td>63.6</td>
<td>27.3</td>
<td>31.8</td>
<td>68.2</td>
<td>40.9</td>
<td>18.2</td>
<td>0</td>
<td>0</td>
<td>18.2</td>
<td>63.6</td>
</tr>
</tbody>
</table>

(N=22)
あることを示す。健常群の AI は -0.741 から 1.260 の間に位置していた。

2. 左右差の頻度 (Table 2)

左右差を認めた症例が最も多い部位は PA で、AI プラス 9 例、AI マイナス 6 例の合計 15 例 (68.2%) に見られ、次いで MF では 14 例 (63.6%)、HE でも同数に左右差が認められた。一方、OC と BG では左右差を呈した症例が見られず、MS と TH (4 例、18.2%) および CE (3 例、13.6%) では少数に左右差が認められた。

3. 左右差の程度 (Fig. 2)

AI に絶対値を付加した |AI| を左右差の大きさとした。左右差は PA (5.77, p<0.001) にて最大で、次いで TE (5.31, p<0.01) にて高値を示し、健常群の生理的左右差との比較でも有意な差を認めた。一方、左右差が最低値を示した部位は OC (1.13) で、その他の部位でも CE (1.99), TH (2.38), BG (3.08) では有意な左右差が認められなかった。

4. 大脳半球局所と小脳半球における AI の関係

大脳半球局所の AI と小脳半球の AI 間には、全体的に負の相関が見いだされた。特に局所的に、LF で相関係数 r = -0.76 と最も強い負の相関が見られ、次いで TP にて r = -0.67 を認めた。HE でも r = -0.71 と同様な関係を認めた。対照的的に BG (r = -0.06), OC (r = -0.10), TH (r = -0.22) では相関が見られなかった (Table 3).

最も強い負の相関を認めた LF と CE 間では Y = -0.54X + 0.35 なる回帰直線が得られ、22 例中 8 例で健常範囲を越えた左右差が認められた (Fig. 3)。半球平均 HE と CE 間でも Y = -0.51X + 0.02 なる回帰直線が得られ、22 例中 13 例に有意な左右差が認められた (Fig. 3).

5. 臨床症状と左右差 (Table 4)

頭頂葉における AI (+) 9 例および AI (-) 6 例
Table 3 Coefficient of correlation between cerebellar AIs and those of selected cortical and subcortical regions

<table>
<thead>
<tr>
<th>Site</th>
<th>LF</th>
<th>MF</th>
<th>UF</th>
<th>TE</th>
<th>PA</th>
<th>TP</th>
<th>MS</th>
<th>OC</th>
<th>BG</th>
<th>TH</th>
<th>HE</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>-0.76</td>
<td>-0.55</td>
<td>-0.58</td>
<td>-0.58</td>
<td>-0.45</td>
<td>-0.67</td>
<td>-0.65</td>
<td>-0.10</td>
<td>-0.06</td>
<td>-0.22</td>
<td>-0.71</td>
</tr>
</tbody>
</table>

r: coefficient of correlation

The rectangular box indicates the normal asymmetry index±2SDs

Fig. 3 Correlations between AIs of cerebellum and those of lower frontal cortex (left) and those of cereberum hemisphere (right).

Table 4 Correlations between asymmetry of regional cerebral blood flow (rCBF) in parietal lobe and asymmetry of language and visuospatial deficits in patients with SDAT

<table>
<thead>
<tr>
<th>Language dysfunction dominant</th>
<th>Visuospatial dysfunction dominant</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI (+)</td>
<td>9/22 (40.9%)</td>
</tr>
<tr>
<td>AI (-)</td>
<td>6/22 (27.3%)</td>
</tr>
</tbody>
</table>

の中で、言語障害を強く認めた症例と視空間障害を強く認めた症例に注目すると、言語障害優位型は44.4％でAI (+) に多く、視空間障害優位型は50％でAI (-) に多い傾向が認められた。

IV. 症例報告

症例1. 左右差を認めないSDAT例（71歳、男性、右利き）

3年前から記録力の低下が始まり、1年前から徘徊や人物誤認が出現した。現在、長谷川式痴呆スケール14にて7.5点と高度な痴呆を呈し、記話・相貌失認・構成失行も加わり、日常生活には部分介助を必要とする。

X線CTおよびMRIでは、側脳室の拡大に加えてシルピウス裂や脳溝の開大を認め、出血や梗塞を示す所見は見られない。SPECTでは、両側の側頭葉や頭頂葉を中心にほぼ対称性に血管下が認められる（Fig. 4）。

症例2. 左右差を認めたSDAT例（81歳、男性、右利き）

4、5年前より記録力障害が出現。2年前より徘徊が目立つようになった。現在では、長谷川式痴呆スケール14にて2.5点と高度な痴呆を呈し、自発性も著しく低下している。特に強い左右失認、構成失行を認め日常生活動作は高度に障害され全介助を必要とする。

X線CTおよびMRIでは、脳室の拡大と頭頂
V. 考察

アルツハイマー型老年痴呆に関する脳循環代謝の研究では、現在PETとSPECTがその主流を占め、大脳半球全体に渡る続発性の循環(代謝)の低下、特に病初期から始まる両側対称性的側頭葉や頭頂葉での低下、次第に前頭葉へと進展する病的変化が一般的な特微的所見とされている1-8。しか

し、最近では敢えて血流や代謝の左右差に着目し、臨床症状との関連を扱った報告9-12も見られる。今回著者らは123I-IMP SPECTを使用し、SDATにおける脳血流の左右差について検討を加えた。

各部位における左右差の頻度と程度に関する検討では、parietalにおいて頻度、程度は全に最大で、temporalに加えてfrontalでも両者が大きい傾向にある。一方、視覚領域や小脳においては左右差がほとんど認められていない。parietal:temporal:frontal等の左右差が大きい部位は、Brunら13によって報告されたアルツハイマー病(AD)に伴うアルツハイマー神経原線維変化や老人斑の

Fig. 4 Case 1. Comparison with CT (top row), MRI (second row) and SPECT (bottom row) in a patient with SDAT showing symmetry of rCBF. CT and MRI (SE 1500/40) demonstrate only moderate brain atrophy. SPECT show symmetrically marked hypoperfusion in parietal and temporal regions.
出現しやすい部位に相当し、病理変化の強い部位で左右差が生じ易いことを意味している。病理変化と局所脳血流との関連は、McGeer ら16)の18F-fluorodeoxyglucose (FDG) を用いた PET による検討で既に明らかとされているが、本研究では SPECT でとらえた脳血流所見が PET と同様に病理変化を鋭敏に反映していることを示している。しかし、血流の左右差と病理変化との関連を述べる場合、幾つかの問題点を考慮に入れる必要がある。例えば一般に病理変化に乏しいとする知覚運動領域15)においても左側が大きく認められたのは、主病変である parietalや temporal に知覚運動領域が解剖学的に近接している事に加え、関心領域の大きさや partial volume effect が関与しているためと思われる点、あるいは左右差の出現頻度・程度に関しては、更に SDAT の病期や病状程度との関係を明らかにする必要がある点、さらには著明な左右差を呈した症例が単に経時的变化を断片的に捕えた偶然的なものなのか17)、SDAT の亜型に類似されるべきもの18)かは今後の追跡調査の必要性を示唆している点などが挙げられる。

臨床症状と左右差の対比では、Foster ら9)が
ADを対象としたFDGを用いたPETにて，言語障害の著しい症例では左側の前頭葉，側頭葉，頭頂葉の局所脳糖代謝率（rCMRglu）が低下し，構成失行の著しい症例では右側の側頭葉，頭頂葉での低下を認め，記録障害のみを呈する症例では有意な左右差が見られなかったとし，Chaseら10)，Haxbyら11)による同様なPETの報告も見られている。SPECTを用いた研究でも，言語障害の強い症例では左側のparietal血流低下が見られたのに対し，視空間認知障害の強い症例では右側のparietal血流低下が見られ，瀬縄ら12)の結果とほぼ一致している。

従来のPETやSPECTを用いたSDATに関する研究は，検索部位として大脳半球を取り扱い，小脳を健常部分と見なしているものが多い。しかし，今回の検討では小脳においても軽度な血流の左右差が見られ，しかもその低下は大脳半球上の低下側と対側間に認められている。この負の相関は，局所的には特にlower frontal, temporo-parietalで強く，大脳半球平均でも同様な関係が見出される。前述したように小脳での病理学的変化が乏しい事から，この小脳での左右差はSDAT自体のdegenerationに伴うものではなく，大脳半球内の変性過程に相応して，crossed cerebellar diachisis（CCD）と同様な皮質橋小脳を介した連絡神経の抑制機序により，対側小脳半球に影響を及ぼした現象と考えられる。SDATの大脳皮質における変性は，本検討で示されたように左右差を伴いながら，左右の大脳皮質に先細性に生じている。したがって，SPECTで見かえ正常例も跳ねる側の大脳半球にもdiaschisisの影響が及び，脳循環の立場からは左右どちらの小脳も健常部分とは見なしが難しい。

Akiyamaら13)は26例のADに対しFDGを用いたPETを施し，本研究と共通，大脳半球と小脳半球の左右差に負の相関を認め，ADにおけるCCDと表現している。Baronら14)によって報告されたCCDに関しても，PETやSPECTによる病理の解明が進み，過性現象としてのdiaschisisの本質的概念に矛盾したCCDの長期持続例が確認21)され，対象とされる疾患も突然発症の局在病変としての脳血管障害から，脳腫瘍22)・慢性硬膜下血腫23)等に拡大されている。しかし，SDATの病変は一側脳半球に限局せずに常時進行性であり，CCDの対象疾患としても拡大した解釈を加えている点や，経時的反復検査からSDATの改善が観察された場合，必ずしも一過性現象を意味するものではない，病理の進行に伴う両側大脳半球での強い先細性変性の結果が左右ほぼ等にSDATを招来し，見かけ上SDATが回復して見られる可能性がある事に注意すべきである。

以上のように，SPECTを用いてSDATの大脳半球所や小脳半球における血流の左右差に関し検討を加えた。従来健常部分として扱われてきた小脳は，脳循環の見地から議論を残す点であり，SDATにて代表される先細性頭蓋内変病を有する疾患に対し，脳循環の定量的評価が必要と考えられた。

VI. 結論

SDAT患者22例および健常高齢者18例にIMP SPECTを実施し，脳血流の左右差に関して詳細に検討を加えた。

1. 左右差の部位別頻度は，PA (68.2%)，次いでMF (63.6%)で高く，OCおよびBGでは低かった。また，CEでは13.6%の症例が有意な左右差を呈した。

2. 左右差の大きさは，PA (IAI=5.77)，次いでTE (5.31)で大きく，OC (1.13)，TH (2.38)に加え，小脳 (1.99)では有意な左右差は認められなかった。

3. 大脳半球と小脳半球における左右差の関係は全体的に負の相関を認める，特にlower frontalではr=-0.76と強い負の相間を呈した。

4. 左右差と臨床症状との関係では，左側PAの血流低下例は言語障害が強く，右側PAの血流低下例は視空間認知障害が強く認められた。

文献

14) 長谷川和夫, 井上勝也, 森谷国光, 他: 老人の痴呆 診査スケールの一検討. 精神医学 16: 965–969, 1974

17) 髙橋貞一郎, 久保田昌宏, 澤田隆俊, 他: アルツハイマー病の 123I-IMP SPECT による観的的検討について. 第4回 パーヒューダミン研究会記録集: 111, 1988

Summary

Asymmetry of Cerebral Blood Flow in Patients with Senile Dementia of Alzheimer Type by SPECT Using I-123 IMP

Hisayuki ARAI*, Haruo HANYU*, Yasutaka KOBAYASHI*, Nobuyoshi HATANO*, Hideyo KATSUNUMA*, Takanari SUZUKI** and Saburo AMINO**

*Departments of Geriatric Medicine and **Radiology, Tokyo Medical College

Regional cerebral blood flow (rCBF) was determined by single photon emission CT (SPECT) with N-isopropyl-p-[123I]iodoamphetamine in 22 patients with clinically diagnosed senile dementia of Alzheimer type (SDAT) and in 18 age matched controls. We calculated asymmetry indices (AIs) of rCBF for matched right-left regions of interest. rCBF of parietal lobe in SDAT patients was significantly most laterally asymmetrical, but the least in occipital lobe. Lateral asymmetry of rCBF in SDAT patients correlated with asymmetry of language and visuospatial functions; decreased rCBF in the left parietal lobe was associated with language dysfunction, and that in the right parietal lobe, with visuospatial dysfunction. Furthermore cerebellar AIs correlated negatively with those of the cerebral hemisphere and lower frontal region in SDAT patients.

The results demonstrate that rCBF measurement by 123I-IMP SPECT is useful to detect lateral asymmetry in reduction of rCBF in SDAT.

Key words: N-isopropyl-p-[123I]iodoamphetamine, single photon emission computed tomography, senile dementia of Alzheimer type, asymmetry, crossed cerebellar diaschisis.