Intraarterial chemotherapy for head and neck cancer has been tried for several years. The distribution of agents has been determined so far by infusing various dyes through a catheter and observing the stained part macroscopically. However, it is difficult to obtain information on the part that cannot be macroscopically observed and to determine the difference in the distribution when the rate of infusion changes.

In the present study, 99mTc-macro-aggregated-albumin (MAA) was injected by using a catheter for intraarterial infusion, and the distribution of the antineoplastic agent was studied.

Two to five mCi of MAA was injected into patients with laryngeal cancer, cancer of the tongue, and cancer of the tonsil. Changes in the distribution due to different rates of infusion and information on the part which could not be observed with any dye could be observed or obtained.

These results suggest that it would be useful to inject 99mTc-MAA through a catheter for intraarterial infusion and to obtain information on the distribution of the intraarterial chemotherapy.

Twelve patients were studied using Tc-99m MAA for evaluation of drug distribution during intraarterial treatment of advanced head and neck cancer. As intense diffuse uptakes of Tc-99m MAA were seen in both lungs of all patients, their uptakes suggested the arterio-venous (A-V) shunts in head and neck regions. The rates (lung count/whole body count) of the A-V shunts on the average of ten patients had exactly catheterized placed at the areas of the external carotid arteries were 57%.

We expected that the A-V shunts were caused by the intratumor’s shunts at first. But in a case with the cancer of the tonsil, the shunt rate didn’t decreased though the tumor had disappeared after intraarterial treatment.

In another case with the cancer of the left maxilla, the shunt rate of the normal right side was recognized about equal to that of the affected left side in the area of the external carotid artery.

Therefore, we inferred that their A-V shunts were biochemical shunts.

As for the investigation of the A-V shunt size in the area of the external carotid artery, the shunt rates were 60.9% using Tc-99m MAA (a mean particle size, 16 μm), were 34.4% using Tc-99m MISA (a mean particle size, 34 μm) on the average of three patients.