RADIOIODINATED PEANUT AGGLUTININ: A POTENTIAL NEW TUMOR SEEKING AGENT (PART 1).

Peanut agglutinin (PNA), one of plant lectins, binds preferentially to the immunodominant group of Thomsen-Friedenreich (T) antigen, which is in reactive form on some human adenocarcinomas.

The lectin was labeled with I-125 by chloramine-T method and Iodogen method. The biological activity of PNA was determined by a preserved hemagglutination titer with a photometer.

Biodistribution study was performed. 2 x 10^6 Lewis lung cancer cells are inoculated subcutaneously to C57 BL/6 mice. The group of mice were sacrificed at 12, 24, 48, and 72 hours after caudal IV injection of I-125 PNA.

1. The biological activity of PNA after radiolabeling was decreased to 50.7% by chloramine-T method. On the other hand, 87.9% the activity was preserved by Iodogen method. These results suggest that Iodogen method is preferable labeling procedure because of its little damage to the biological activity of PNA.

2. I-125 PNA labeled by Iodogen was more rapidly cleared from the liver, spleen, bone, muscle, and blood than that by chloramine-T.

3. Radioiodinated PNA showed a rapid clearance from blood, and good tumor localization. Tumor to Muscle ratio: 3.8 (at 48h.)
 Tumor to blood ratio: 2.0 (at 72h.)

RADIOIODINATED PEANUT AGGLUTININ: A POTENTIAL NEW TUMOR SEEKING AGENT (PART 2).

The Thomsen-Friedenreich (T) antigen, 8-D-galactosyl-(1→3)-α-N-acetyl-D-galactosamine, is exposed in reactive form on adenocarcinomas of human breast, gastrointestinal and respiratory tract. On the contrary, the antigen is in the cryptic form masked by N-acetyl neuramic acid in healthy tissues. Peanut lectin (PNA) has a strong binding affinity for the T antigen. We investigated the potential of radioiodinated PNA as a tumor localizing agent in animal model system.

The lectin was labeled with I-131 by Iodogen (1,3,4,6-Tetrachloro-3a,6a-diphenylglycouril) method to yield a specific activity of 1 mCi/mg PNA. There was no significant difference of biological activity of PNA between before and after labeling.

Lewis lung cancer, B-16 melanotic melanoma, Yoshida sarcoma, Hepatoma AH 109A, and Ehrlich ascites tumor were used as animal tumor models. An abscess induced by Turpentine oil was used as a benign model.

These animals received a caudal IV injection of 100 μCi of I-131 PNA. Serial scintigraphic images were obtained at 6, 24, 48, and 72 hours following the I-131 PNA injections.

The tumor tissue was clearly visualized as a function of time, because of the low background activity subtraction technique was unnecessary.