280

LUNG MOTION CORRECTION PROGRAM FOR GATED VENTILATION IMAGES

A lung motion correction program using a linear coordinate transformation for phase analysis of the gated ventilation image was insufficient to correct the different regional motion from the base to the apex of the lung. The purpose of this study is to design and evaluate the other programs which used polynomial coordinate transformation and polar coordinate transformation. The equations we used are as follows. (1)Program A

\[X' = ax + by + cxy + dx, \quad Y' = ex + fy + gxy + hx. \]

(2)Program B

\[X' = ax + by + cxy + dx + ey + f, \quad Y' = gx + hy + jxy + kxy + l. \]

(3)Program C

\[X' = \alpha (\theta + z), \quad Y' = \beta (\theta + z), \quad (x', y') \text{ and } (x, y) \text{ represent the coordinates in the corrected lung image. Polynomial coordinate transformation using program A showed good results of the contour fitting and phase images only when the adequate reference points were selected. The other polynomial coordinate transformation using program B failed to match the lung contours and showed the skew of the intrapulmonary coordinates, which was probably due to the high degree of freedom of transformation. The polar coordinate transformation was successful in matching the lung contour but showed the skew of the intrapulmonary coordinates. Since all of them were impossible to use in routine clinical practice, some other reasonable programs should be designed.}

281

CARCINOEMBRYONIC ANTIGEN CHANGES OF PATIENTS WITH SMALL CELL LUNG CANCER DURING TREATMENT

Carcinoembryonic antigen (CEA) in serum was measured weekly to 170 (Limited Disease 91, Extensive Disease 79) patients with small cell lung cancer (SCLC). From analysis of CEA changes during treatment, we evaluated usefulness of CEA as monitoring of therapeutic effects, survival and recurrence of SCLC. The radioimmunoassay procedure with two-step sandwich method was used for determining CEA levels. Twenty-three complete responders (CR), 83 partial responders (PR) and 48 non responders (NC) were observed to initial therapy. Mean CEA levels were decreased from 5.5 ng/ml to 1.0 ng/ml in 23 CRs, from 4.4 ng/ml to 3.3 ng/ml in 83 PRs, and from 7.1 ng/ml to 6.4 ng/ml in 48 NRs during therapy, out of 23 CRs, 14 cases had pretreatment CEA levels above 2.6 ng/ml, and those CEA levels decreased to below 2.5 ng/ml after initial therapy.

The median survival of 104 cases, whose CEA levels were decreased after initial therapy, was 36 weeks, in contrast, the median survival of 66 cases, whose CEA levels were increased after initial therapy, was 24 weeks. There was significant difference (p<0.01).

We also investigated the relationship between clinical course, such as recurancy and death, and CEA changes during treatment.

282

ASSESSMENT OF MUCOUS FLOW AND CILIARY ACTION USING RADIOAEROSOL IN PATIENTS WITH LUNG CANCER WHO UNDERWENT TRACHEOBRONCHOPLASTY.
S. Kosuda, Y. Takagi, A. Kubo, S. Hashimoto, T. Suzuki and T. Ishihara. Okura National Hospital and Keio University School of Medicine, Tokyo.

We studied the clearance of inhaled radioaerosol from the tracheobronchial tree of post-operative patients with lung cancer. The number of the patients with reconstructive surgery was 9, and that of the patients with the so-called lobectomy was 5. Tc-99m HSA was used as aerosol particle that was produced by the DeVlilbiss nebulizer apparatus. Continuous measurement of radioactivity was performed for 120 min. in the supine position. In order to assess the mucociliary clearance of the tracheobronchial trees quantitatively, the clearance curves of the whole lungs were fitted into 2 compartment curves, fast and slow, by minimum square involution. And half time of the curve that subtract the slow compartment from the fast was calculated. In conclusion, half time value appeared to be well correlated with the visual assessment of cine-scintigraphy. Mucociliary clearance of the bronchial tree with reconstruction was prolonged (T1/2, 28.3 ±10.6 min.), compared with that of the bronchial tree without operation (T1/2, 11.9 ±3.1 min.). However, mucociliary clearance of the lobectomy group was not prolonged (T1/2, 13.1 ±7.3 min.).

283

QUANTITATIVE MEASUREMENT OF TRACER ACCUMULATION TO LUNG AND TUMOR USING THE CORRECTION WITH TISSUE DENSITY USING RADIOAEROSOL IN PATIENTS WITH LUNG CANCER.

In the 23rd annual meeting, we reported quantitative measurement of lung density with positron computed tomography (PET) using C-11 ethanol inhalation method. We can not evaluate tracer accumulation to lung exactly, because lung density is very low compared with other organs. So tracer accumulation to lung should be corrected with lung density. In this meeting, we attempted to correct DAR (differential absorption ratio) values of lung and tumor in the imaging of pulmonary tumor with PET using C-11-methionine. The results showed the difference of tracer accumulation between lung and tumor changed in each case. We thought that the results were caused by the high methionine uptake of lung and the difference of tumor viability.