MULTIDIRECTIONAL MODIFIED LAO ACQUISITION ON SHORT AXIS OF LEFT VENTRICLE IN CYCLIC GATED BLOOD POOL SCINTGRAPHY. T. Shimokata, K. Sakakura, J. Sakurai and Y. Futamura. Cardiovascular Division Meitosu Hospital, Nagoya.

The analysis of left ventricular performance is commonly undergone using the modified left anterior oblique (MLAO) of cyclic gated blood pool images with parallel hole collimator. Nevertheless, it is occasionally difficult to determine the extension and the location of abnormal wall motion of left ventricle, became the anterior wall overlapped usually with the posterior wall.

The purpose of this study is to separate the overlapped wall motion and to get the accurate determination of the dyskinetic region.

The slant hole collimator was positioned to cranio-caudal MLAO and the long axial views were acquired. In the same way, short axial views were obtained by the slant hole collimator positioned caudo-cranial MLAO.

By using a phase analysis combined with multidirectional MLAO acquisition, the accurate analysis of the dyskinesis was obtained in the case of the anterior overlapping of left ventricular wall motion.

FACTOR ANALYSIS OF TC-99M GATED BLOOD POOL IMAGES. H. Inagaki, M. Ukai, M. Furui, S. Kamihara, Toyoda Hospital, Toyoda, M. Koide, K. Yamauti, M. Yokota, I. Shokata, Nagoya University of Medicine, Nagoya.

Various methods, such as phase analysis, calculation of ejection fractions and processing of contour images, have been utilized in analyzing Tc-99m gated blood pool images. Factor analysis, which is a new data processing method of dynamic scintigraphic images, was introduced in this study.

To assess the usefulness of factor analysis, we compared both phase images and factor images to the electrocardiograph left ventriculograms in 20 patients with coronary heart disease. In the factor images, ventricles and atria were separated by the different contribution of the 1st and 2nd factor. And the abnormal wall motion was distinguished from the normal one by the greater contribution of the pathological factor. This new method was also available for obtaining the abnormality of diastolic properties in patients with regurgitant valvular heart disease.


To evaluate the usefulness of factor analysis, 10 normals and 67 patients (15 RBBB, 10 LBBB, 10 pacemaker, 32 myocardial infarction) were studied by the cardiac blood-pool scintigraphy. In the normal cases, 2 factors were found in 6 cases, 3 factors in 4 cases. The first and the second factor of normals were thought to be ventricular and atrial factor, respectively. The third factor of normals was considered to represent extracardiac region in most cases. In the cases with conduction disturbance, an asynchrony between right and left ventricles could be detected both by factor analysis and by Fourier analysis in a similar fashion. In the cases with myocardial infarction, factor analysis could more sensitively detect regional wall motion abnormalities than Fourier analysis. The asynnergy detected by factor analysis was compatible with the result of the contrast left ventriculography. Factor analysis was found to be a useful technique for cardiac scintigraphic studies.