BASIC STUDIES ON BONE MARROW DISEASES USING NMR. A. Muranaka, J. Saito and Y. Ito. Division of Nuclear Medicine, Kawasaki Medical School and Department of Nuclear Medicine, Fukushima Medical School. Kurashiki and Fukushima.

In order to know usefulness of NMR imaging in bone marrow diseases, T_1 and T_2 in intramedullary transplanted VX-2-rabbits were measured. And also, the effects of blood loss and administration of anticancer agents on T_1 and T_2 values were studied. The apparatus used was XL-200 superconducting FT NMR spectrometer system (Varian, Field strength: 47 KG, 1H at 200 MHz). The specimens were inserted in test tubes 5 mm in diameter. Proton-NMR spectra in normal bone marrow tissues separated into two peaks originated from H_2O and CH_2-chains. T_1 and T_2 values in two peaks were markedly different. Content of fatty marrow was variable in individuality and localization. These anatomical and biochemical features suggest us the necessity to evaluate T_1 and T_2 in each peak separately for the construction of NMR images. As for T_1 and T_2 in H_2O-peaks, T_1 in VX-2 was about 1.3 times as much as that of normal bone marrow tissues, while T_2 was about 1.7 times. Blood loss (stimulation) and administration of Mitomycin C (suppression) affected T_1 and T_2 in bone marrow. Namely, these procedures caused increases of T_1 and T_2 values and the values were between the ranges of normal marrow and tumor. NMR-CT might be extremely valuable for diagnostic imaging supported by pathological and biochemical standpoints.