Previously, we reported the excitation function of Zn-63 and Cu-63 via reaction of Cu-63(p,n) and Cu-63(p,2n) with our CS-30 cyclotrons. (proton energy 26MeV) Using these data we estimate the excitation function and RI production yield of Hg-195m and Co-55 by irradiating Au and Fe foils. Hg-195m and Co-55 are expected very useful in the field of nuclear medicine as Hg-195m= Au-195m generator and Co-55 bleomycin.

As the experimental method, around 20 sheets of Au foil and Fe foil were bombarded with Cu foils sandwiched. Thickness of each foil was 0.02-0.05mm in order for the energy loss in the foil to be less than 1MeV.

After the bombardment, activity of each foil was measured with Ge-Li detector connected to the 2000ch MCA. The integrated beam current was calculated by the activity of Zn-63 and Zn-62 from Cu foils.

As the result, the best conditions of the bombardment for our cyclotrons are:

1) for Hg-195m: 0.4g/cm² thick Au target in which energy loss is 6MeV, provides yield rate of 2mCl/uAhr.
2) for Co-55: 0.5g/cm² thick Fe target in which energy loss is 7MeV, provides yield rate of 2mCl/uAhr.

The radio-contaminants produced at the same time will also be reported.