263

THE EFFECTS OF ACUPUNCTURE RECORDED BY
POSITRON ECT. (PRELIMINARY REPORT). T. Yano,
Division of Acupuncture Medicine, Meiji
College of Acupuncture. Kyoto.

The practitioners of acupuncture have for a long time been engaged in studying
the mechanism by which acupuncture achieves its therapeutic effects, EEG and Micro-
vibraion (MV) results as indices. As a result, increased activity was identified in the
cortex and hypothalamus on the side of the brain where the stimuli were given. In some cases, the increase appeared on both sides, suggesting that acupuncture
stimulus affects the activity of the cranial nerves over a wider area than pre-
viously thought.

264

18F-DIG METABOLISM IN PREGNANT RATS AND FETUSES IN
HYPOXIC CONDITION. T. Ito, K. Ishiwata and K.
Kawashima. CYCLOTRON & Rl CENTER, TOKYO UNIVERSITY. SENDAI.

F-18-fluorodeoxyglucose (18F-DIG) was injected to pregnant rats exposed to hypoxic atmosphere consisted of 10% O2 in N2 gas, and its distribution to maternal organs, placenta and fetuses were calculated in order to study the energy metabolism in the fetal asphyxia. In hypoxic condition, uptake of 18F-DIG were signif-
ificantly increased with time up to 30 min. after injection in maternal and fetal brains and heart, placenta and fetuses compared with control. Effects of duration (0, 30 and 60 min.) of pre-
exposure to hypoxia before 18F-DIG injection were estimated at 30min. after injection by two different post-injection states; continuous hypoxic state and placing back in room air. In first state, organ dis-
bution of 18F-DIG were exaggerated especially in maternal fetal brains and hearts by 30 min. pre-
exposure, but 60min. pre-exposure had tendency to inhibit the uptake rates. In second condition, 60 min. pre-exposure has increased fetal liver uptakes and inhibited that of fetal brains and others. Distribution ratio of 18F-DIG to placenta from blood was increased within 30 min. time, and in hypoxic condition that showed high value. But transport ratio from placenta to fetus was almost constant in all con-
ditions.

From these experiments, we can estimated that placenta may have been responsible to fetal energy demands, which increase in hypoxia, and maintained steady supply state to fetus in any conditions.

265

BIODISTRIBUTION AND PLACENTAL TRANSFER OF
POSITRON-RADIOPHARMACEUTICALS IN PREGNANT
RATS. K. Ishiwata, T. Ito, K. Kawashima, R.
Iwata, T. Takahashi, M. Momma, K. Yama, H.
Nakahara & H. Yamada. Cyclotron & RI Center,
Tohoku Univ. Sendai. N.Sakuragawa & A. Matsu, National Center of Nervous, Mental & Muscular Disorders, Tokyo.

Biodistribution and placental transfer of positron-emitting radiopharmaceuticals in pregnant rats were examined. 18F-2-fluoro-2-deoxyglucose (FDG), 18F-glucose/fructose (GlC/ Frc), 14C-L-methionine (Met), 14C-D,L-leucine (Leu), 14C-adamine (Ade) and 14C-coenzyme Q10 (CoQ) were injected into the pregnant rats in 16-18 days of gestation and their tissue distributions were determined up to 30 min. The placenta and fetus uptakes increased with time in the order of Ade>Leu>Met>Frc<FDG. The CoQ was present in high level in the placenta, but the transfer into the fetus was virtually blocked by the placenta. The placenta-to-blood ratios for all drugs increased with time, but the ratios for Ade and CoQ were higher than those for other drugs. The fetus-to-placenta ratios for the amino acids were always over 1, which suggested the significant uptake of the amino acids in the placenta. The ratios for the sugars were less than 1 and that for Ade was much less. With regard to the brain uptake the fetal brain uptake was larger than the maternal one for each drug.

Our results support the presence of the selectivity in placental transfer of drugs, even constituents in the tissues, that is the blood-placenta barriers.

266

EXPERIMENTAL STUDY ABOUT 11CO, METABOLISM OF
RAT BRAIN. N. Sakuragawa, A. Matsu, Y.
Kohno. National Center for Nervous, Mental and Muscular Disorders.

11CO, metabolism in rat brain was studied by using newly developed methods to analyze the metabolites in the acid-soluble fraction of tissues. A wistar rat without anesthesia (200-300g) was placed in a glass container where CO2 (50-100 ml) was injected. After exposure for 5, 30 and 60 min., the rat was taken out and defapsitated soon or 20 min. later. The brain, frozen into liquid N2, was homogenized with 0.3 M TCA and separated into the acid soluble (AS) and acid insoluble (AI) fraction. AS fraction was applied to the double column chromatography, which is composed of the upper (Qwex 1-AG) and lower (Dowex 50WX8) column. 11CO radioactivity of each samples was counted by scintillation well counter and corrected by physical decay of 11C. Acid labile fraction(11CO3, H1CO3, H2CO3, H3CO3)revealed 84.3-87.3% of total counts of brain which declined to 57.5-58.4% in 20 min. Contrarily, AS fraction showed 14.4% which increased with time. Column chromatography gave 5 different fractions. There was a highest activity in the 5th fraction, containing the organic compounds in the Krebs cycle. The 3rd fraction containing neutral amino acid showed 11-15% which increased to 27.8% in 20 min. We use these data to suggest that inhaled 11CO3 was carried into brain mostly as an acid labile fraction and metabolically trapped into the organic compounds which increased with time.