C. Radiopharmaceuticals

1515

SEMI-IN-VIVO LABELING OF RBC WITH Tc-99m.
A. Ando, M. Katayama, I. Ando, T. Hiraki and K. Hisada Schools of Paramedicine and Medicine, Kanazawa University, Kanazawa

Stannous chloride was evaluated as a stannous ion source for the semi-in-vivo labeling of red blood cells (RBC) with Tc-99m. In this animal study, optimal dose of stannous chloride, optimal time interval between the administration of stannous chloride and withdrawing of blood sample, and optimal incubation time for Sn-RBC with Tc-99m were studied. Spleen imaging with Tc-99m-labeled heat-damage RBC was also evaluated.

The results of our investigation revealed that optimal doses of stannous chloride were from 23.5 µg/kg to 3.17 µg/kg, optimal time intervals were from 5 minutes to 30 minutes, and optimal incubation times were from 1 minutes to 20 minutes. Spleen was clearly imaged with Tc-99m-labeled heat damage RBC.

1516

FUNDAMENTAL EVALUATION OF IN VIVO LABELING OF RED BLOOD CELLS WITH Tc-99m USING STANNOUS CHLORIDE.
M. Katayama, A. Ando, I. Ando, T. Hiraki and K. Hisada School of paramedicine and medicine, Kanazawa University.

Stannous chloride was evaluated as a stannous ion source for the in vivo labeling of red blood cells (RBC) with Tc-99m. In this study, the labeling of RBC with Tc-99m was performed by two successive intravenous administrations of stannous chloride and Tc-99m-pertechnetate, and the optimal dose of stannous chloride and the optimal time interval between the two injection were evaluated. The labeling efficiency for this procedure was also evaluated as a function of time after the pertechnetate injection.

The results of our investigation revealed that the maximal in vivo RBC labeling (86%) can be obtained at 15 min after the pertechnetate injection with an i.v. dose of 12.7µg/kg of stannous chloride followed 15 min later by an i.v. injection of Tc-99m-pertechnetate. In conclusion, stannous chloride was found to be an excellent stannous ion source for the in vivo labeling of RBC with Tc-99m.

1517

CLINICAL TRIAL AND EVALUATION OF IN VIVO LABELING OF RED BLOOD CELLS WITH Tc-99m USING STANNOUS CHLORIDE.
T. Hiraki*, A. Ando*, M. Katayama*, I. Ando*, K. Hisada** and Y. Miyazaki*** School of Paramedicine* and Medicine** Kanazawa University, Noto Public Hospital.***

For the clinical investigation, stannous chloride was evaluated as a stannous ion source for in vivo labeling of red blood cells (RBC) with Tc-99m.

In this study, the labeling of RBC with Tc-99m was performed by two successive intravenous administrations of stannous chloride and Tc-99m pertechnetate. Used optimal dose of stannous chloride was 0.76mg/4ml/60 Kg (12.7µg/Kg) and the optimal time interval between the two injection was 15 min. later by an i.v. injection of Tc-99m pertechnetate. Used dose of Tc-99m pertechnetate was 30 mCi/3ml/60 Kg in each cases.

The results of our investigation revealed that stannous chloride was found to be an excellent stannous ion source for the in vivo labeling of RBC with Tc-99m in clinical use of 11 cases including the cardio vascular disease with safety.

1518

EVALUATION OF Tc-99m LABELED aminodTS-HSA.

3-Aminomethylene-2,4-pentanedione-bis(thiosemicarbazone)(aminodTS) has been synthesized as a promising bifunctional chelating agent. AminodTS was attached to HSA, a protein model, using carbodiimide coupling technique. The resultant aminodTS-HSA conjugate was labeled with Tc-99m by simple mixing with Tc-99m pertechnetate solution in the presence of Sn(II). Electrophoresis of Tc-99m labeled aminodTS-HSA showed that the labeling efficiency was nearly 100%, and that its electric charge was substantially the same as that of native HSA. In vitro stability of Tc-99m labeled aminodTS-HSA was very high, and neither free Tc-99m nor reduced Tc-99m was detected even at 48 hr after preparation.

In vivo studies showed that blood retention and organ uptake of Tc-99m labeled aminodTS-HSA were comparable to those of 131I labeled HSA. These results suggest that aminodTS is an excellent bifunctional chelating agent, and that the labeled conjugate is a promising blood pool scanning agent.