161
CLINICAL EVALUATION OF LEFT VENTRICULAR EJECTION FRACTION BY FIRST PASS AND MULTI-GATED RADIONUCLIDE CARDIOANGIOGRAPHY. T.Nishimura, Y.Inami, M.Kagawa, M. Hayashi, T.Kozuka
Cardiology and Nuclear Medicine, National Cardiovascular Center, Osaka

The left ventricular ejection fraction (LVEF) can be measured quantitatively from radionuclide angiography using an Anger camera and on-line minicomputer system. LVEF by first pass method was calculated by the average of three cardiac cycles which corresponded to the left ventricular volume changes during each cardiac cycle, on the other hand, LVEF by multi-gated method was calculated the ratio or SV/EDV counts determined from the left ventricular volume curves. The effects of LV size and background on determination of LVEF were examined on both methods. The findings demonstrated that the time activity curve must be generated from ROI fits LV precisely and must be corrected from the contribution arising from non cardiac structure. First pass EF was correlated well with contrast EF in 20 patients (r=0.89) and multi-gated EF was correlated well with contrast EF in 50 patients (r=0.902). Then, first pass EF and multi-gated EF has simple correlation coefficient of 0.87. In conclusion, these non-invasive methods appear particulary useful for serial evaluation of cardiac patients.

162

Left ventricular ejection fraction (LVEF) and ventricular wall motion obtained by the first pass method were compared with those by the equilibrium method.

Materials and Methods: Thirty cases (11 normal volunteers, 13 myocardial infarctions and 6 others) were examined. Used unit was Pho/Gamma V (Searle) with parallel hole collimator and Pho/Gamma LFOV (Searle) with bilateral collimator was primarily used. In the first pass method, all cases were observed from RAO and a few cases were observed from LAO at the same time. The equilibrium method was performed from LAO in all cases.

Results: LVEF obtained by the first pass method from RAO had good relations with LV EF obtained by the equilibrium method (y=1.02x-3.66, r=0.92). In the first pass method, LVEF from LAO was less than LVEF from RAO, probably due to the overlap of the aorta. About the ventricular wall motion, first pass method from RAO could detect the asynnergy of anterior wall, inferior wall and a part of posterior wall. Equilibrium method was suitable to observe lateral wall and septum.

163

In recent years, with the development and use of programmable pacemakers, there has been a growing need for a method to measure the hemodynamic effects of changes in pacing parameters. The parameters calculated from multi-gated and dye methods were cardiac output, end-diastolic volume, end-systolic volume, stroke volume and ejection fraction. The relative SV counts determined from edge extraction of EDV, ESV images were good correlation with stroke volume by dye method.

4 patients of complete A-V block treated with programmable pacemaker were studied at various heart rates (30-120/min) by these methods. According to the increase of heart rate, rate-output curve showed the flat type. EDV, ESV, SV were decreased gradually and EF was unvariable in all cases.

In conclusion, left ventricular function at ventricular pacing by increase of heart rate were manifested from the decrease of EDV caused by the shortening of filling time of left ventricle, therefore, other parameters were changed by the contractility of myocardium and Starling's law of cardiac function.

164
ARTIFACT BY RESPIRATORY MOTION ON ASSESSMENT OF LEFT VENTRICULAR FUNCTION USING EQUILIBRIUM RADIONUCLIDE IMAGING. N. Wakahama, Y. Wakahama, M. Kidoo, T. Nakada, T. Ashie and M. Furudate, Nippon Steel Corporation Muroran Workers Hospital, Wakamatsu Musen and Department of Radiology, Hokkaido University School of Medicine, Muroran, Eto and Sapporo.

A conventional gated method(COG) which yields both respiratory and ECG synchronized images (RESI,M) and a respiratory synchronized(RES ) region of interest technique(RESROI) which assessed left ventricular curve(LVC) in consideration of respiratory motion(REM) has been developed using a minicomputer system and an expiratory trigger trial device. Measurements were made at rest, immediately after supine bicycle exercise and 10 minutes after it utilizing LAO view with a gamma camera following in vivo Tc-99m(15-20 mCi) blood pool labelling. RESI were reconstructed by COG as both RE gate(200 msec) and ECG gate(300 msec) were closed. These images might have showed that only ECG synchronized images were blurred by REM, and so more after exercise. REM was performed by variable ROI adjusted to change in RES position of LV images throughout the REM cycle. By this, it might have been proved in normal persons that under no consideration of REM LVC was distored, and LVEF(%) was assessed more lower as follows:

<table>
<thead>
<tr>
<th>heart rate</th>
<th>at rest</th>
<th>after EX</th>
<th>10min after EX</th>
</tr>
</thead>
<tbody>
<tr>
<td>use RESI-M</td>
<td>75</td>
<td>120</td>
<td>75</td>
</tr>
<tr>
<td>use RESROI</td>
<td>75</td>
<td>120</td>
<td>75</td>
</tr>
</tbody>
</table>

These methods may be useful and necessary for cardiac performance study.