vided between right and left kidney according to the initial height of the transfer function of each kidney, which is assumed to be proportional to the blood flow.

Functional Image of the Kidney Using on-Line Minicomputer System in Obstructive Uropathies

Tsunehiko Nishimura*, Toru Kashiwagi†, Kazufumi Kimura*, Michitoshi Inoue**, Masatsugu Hori**, Hiroshi Takeda**, Hiroshi Abe** and Fumihiko Kajiya***
*The Department of Radiology and Nuclear Medicine, Medical School, Osaka University
**The Department of Internal Medicine, Medical School, Osaka University
***The Department of Electrical Engineering, Osaka University

Functional image of the kidney, the parametric map of the regional renal function were developed using 131-hippuran sequential scintigram data. An Anger camera and on-line minicomputer system were employed for the data processing.

A dynamic curve in each element of the digitalized image was extracted and the pertinent parameters (T-max, C-max, UP SLOPE, DOWN SLOPE, and COMPARTMENT) were calculated to display as parametric map on a CRT.

In this study, 47 cases of obstructive uropathy including renal stone p-u junction stenosis etc, were studied using these functional imaging and were compared with the findings of renogram, renal scintigram, intravenous pyelography and laboratory data.

Classifications of obstructive uropathy were divided into 4 groups of hydronephrosis by I.V.P. (Oka, Otnes), 11 cases of dilated pelvis, 8 cases of atrophy of papillae, 16 cases of large global calyces, 8 cases of huge hydronephrosis.

In generally, in the case of hydronephrosis, significant delay of T-max and increase of number of COMPARTMENT were demonstrated at the hydronephrotic portion, especially, image of DOWN SLOPE in the hydronephrotic portion were expressed as defect, which the remaining cortex with normal excretory function is clearly discriminated from the impaired portion.

According to the degree of hydronephrosis (1-4), each parametric map showed the characteristic image which reflect clinical significance in obstructive uropathy, and the size and the degree of hydronephrotic change are estimated in the functional images. Moreover, the functional images of the hydronephrosis were proved to be useful for the evaluation of regional distribution of the renal function and were applied to the indication of operation of hydronephrotic patients.

Follow up by Using 99mTc-DTPA after Operation of Urinary Diversion with the Ilial Conduit and the Ureterosigmoidostomy

Kiyoshi Kineuchi* and Katsuya Nagase**
*Department of Urology, School of Medicine, Juntendo University
**Department of Radiology, School of Medicine, Juntendo University

We tried to analyse of dynamics of urine stream in ileum and colon after operation of urinary diversion by using 99mTc-DTPA and γ-camera with computer system.

Collimeter is high-analysable with 2 million hole for low energy. 5-7mCi of 99mTc-DTPA was injected intravenously, patient was lay supinely, and image of intestine was obtained clearly by polaroid camera timely from about 5 or 6 minute after injection in normal case of renal function. Simultaneously collecting curve and them avoiding curve of radioactivity in the intestine by direct counting was recorded continuously. It's able to compare with normal collecting curve of radio-
activity to abnormal collecting curve by computer analyse about region of interest in the intestine and to estimate of renal function disturbance.
Collecting curve of ileal conduit and uretero-sigmoidostomy, which showed similarly.
This comparison has been difficult by X-P examination such as infravenous pyclography or usual radioisotope renogram.

Radioisotope renal Angiography with 99mTc-DMSA.: Computer
Analysis of Renal Vascular Phase
Toshio Kasuga*, Fumiko Nakanishi*, Toshio Kobayashi*, Yoshio Sakamoto*
and Kesato Yano**
*Department of Radiology, Faculty of Medicine, Shinshu University
**Technological Service of Radiology, Shinshu University Hospital

99mTc-DMSA is a suitable substitute for organomercurial renal imaging agents. Static imaging and dynamic renal vascular flow studies with 99mTc-DMSA, were performed to evaluate renal hypertension.
1. Methods.
 After bolus injection of 10mCi of 99mTc-DMSA, early rapid-sequential images were stored on the computer system at interval of 1 second for 60 seconds. An early image was displayed on a color TV monitor and superimposed on the static image. Time-activity curves, corresponding to ROI (region of interest) over kidneys and aorta, were obtained and 4 parameters were calculated.
 1) Peak to peak time indicating passing time, was calculated by time activity curve of each kidney and aorta.
 2) Peak to peak ratio (affected kidney/normal kidney) was obtained.
 3) Transit time indicating interval from maximum descending portion to maximum descending portion of first peak, was calculated by differential curve which was obtained by processing time-activity curve.
 4) Transit time ratio (kidney/aorta) was calculated.
2. Results.
 1) Diagnostic informations were increased by displaying superimposed images.
 2) Transit time ratio and peak to peak ratio were increased in the patients with reno-vascular hypertensions.
3. Conclusion.
 Our analytical methods of radioisotope renal angiography with 99mTc-DMSA were found to be usefull aid for differential diagnosis of the reno-vascular hypertension.

Pelvic RI-angiography by 99mTc-Pertechnetate in Urology
E. Endo**, and K. Hagiwara**
*Department of Urology, Nihon University School of Medicine
**RI Section, Nihon University, School of Medicine

Pelvic RI angiography was performed in the cases of bladder tumor, prostatic carcinoma and benign prostatic hypertrophy to evaluate tumor gross and tumor state. After rapid injection of 99mTc-pertechnetate, tumor image was tried to visualize with scinticamera, then analyzed with minicomputer. 35 of 50 cases with bladder tumor showed positive tumor image, which was related to the tumor gross, but not to the tumor stage. Prostatic image was demonstrated in 2 untreated cases of 5 with prostatic carcinoma and in 2 of 10 with benign porstatice hypertrophy. Useful results were also obtained from a few cases of testicular tumors, tuberculosis of the epididymis, mumps orchitis and scrotal hematoma.
Therefore, this simple method would be not