LFOV gamma camera, Ventil-con and mini-computer (Scintipac 200) were used. Ninety frames of lung images after inhalation of 133Xe gas were obtained with 5 seconds interval by use of scintipac 200. The image consists of 64×64 pixels.

We supposed that 133Xe gas concentration in the lung during washout was proportional to the first term of the following equation; $I = I_0 \exp (-Kt) + B$, where B is background count, I_0 initial count, t time elapsed and K constant. K and B were obtained by use of the successive approximation with the least square method. Initial value K was obtained using several frames of initial washout and approximate formula, $\exp(-Kt) = 1 - Kt$. Counts of the last frame was used for B. The number of iteration was usually about 10. Six ROI’s were set in both lung fields and mean transit time, which were reciprocal of K were calculated in each ROI by use of BICOM.

Since BICOM is built-in language of scintipac 200 and based on BASIC language, programming and operation of the data processing were very easy. Clinical usefulness of regional mean transit time will be reported elsewhere.

Gamma Camera Imaging of Closing Phenomenon in the Lung

T. SUZUKI, Y. ISHII, H. ITOH, Y. YONEKURA, D. HAMANAKA, K. TORIZUKA and T. FUJITA

Department of Radiology and Nuclear Medicine, Kyoto University
Medical School, Kyoto

Closing phenomenon is known to be an expression of small airway closure at the state of low transpulmonary pressure and thought to be a sensitive means for early pathophysiological changes of the small airway. Since this phenomenon has never been materialized so far, we attempted to visualize it using radioactive gas and gamma camera, and compared it with the conventional resident gas method.

Ten normal volunteer with or without a history of smoking habit and eight patients with a variety of cardiopulmonary disease were investigated. A bolus of 81mKr or 133Xe gas as a marker gas was inhaled at the level of reserve volume with the subsequent slow maximum inspiration, the image of inspiration distribution was recorded by the gamma camera and stored into the storage system for further analysis. This image was compared with the image of volume distribution of the radioactive gas which was obtained by the recording of the equibrated state at the level of maximum inspiration within a closed circuit during rebreathing.

In the case of smoker as well as of the patients with interstitial edema, closing phenomenon were observed as inspiratory defect at the dependent lower lung region with a horizontal demarcation. The level of this boundary was well correlated with the closing capacity measured by the conventional resident gas method. The radioactivity value was converted into volume value by a digital computer, and this estimated value was better correlated with the closing capacity ($r=0.947$, $p<0.005$). In the case with other diseases such as chronic obstructive pulmonary disease and lung fibrosis, closing phenomenon was expressed in a form of exaggerated defect at diseased region.

Studies on the Mechanism of the Phase IV in a Single N_2 Method by Using 81mKr

O. KITADA, Y. NISHIMOTO, A. KISHIMOTO, T. TAKEDA, M. SUGITA, A. NISHIKAWA, K. TACHIBANA and K. HYODO

Department of Internal Medicine and Radioisotopes, Hyogo Medical College, Nishinomiya

The phase IV in a single breath N_2 washout has been well recognized to be useful for early detection of small airway disease. In this paper the mechanism of the phase IV was studied by 81mKr.