were malignant (90.9%). The percent positive scan of 13 cases of malignant tumors and 6 cases of benign tumors using 201Tl were 92.3% (12/13) and 84.3% (5/6) respectively. These results show that 131I scans exceed 201Tl scan for determining malignancy of the thyroid tumors. 2) There was more accumulation of either 131I or 201Tl in follicular tumors than in papillary tumors in the cases of both benign and malignant tumors. There was more accumulation of 131I in solid tumors than in cystic tumors in the cases of both benign and malignant tumors.

However, there was accumulation of 201Tl in both solid and cystic tumors. 3) In all of six cases with chronic thyroiditis verified by open biopsy or surgery, there was almost the same degree of accumulation of 201Tl as the normal functioning area on 131I scans in the localized hypofunctioning area. The combination of 131I and 201Tl on thyroid scan will be useful in the diagnosis of chronic thyroiditis.

Evaluation of Thyroid Diseases Using Multi-nuclei Scintigraphy

Machiko Kumano*, Kazuyuki Narabayashi*, Kazuo Ito**, Yoshio Inoue**, Shoji Nishiyama** and Tomohiro Maeda***

*Department of Radiology, Hyogo Cancer Hospital
**Department of Radiology, Kobe University
***Department of Radiology, Kyoto Pref. Medical College

Differential diagnoses of various thyroid diseases were performed with the combined use of Na131I, 99mTcO$_4^-$ and 201TlCl. A total of 45 patients were examined: 12 patients with Graves' disease, 11 with Hashimoto's thyroiditis, 6 with cancer, 4 with thyroid cyst and 12 hospitalized controls without thyroid disease.

First, 100μCi of Na131I was administered orally and the uptake was measured at intervals of 1,3, and 24 hrs. A scan dose of 1 mCi of 201TlCl was then administered IV and the thyroid uptake of the 201TlCl was continuously recorded for the first 30 minutes. Scintigraphy was subsequently carried out. The 201TlCl clearance rate was derived from the following ratio: 20 min. uptake/5 min. uptake value (%).

After 201TlCl scanning a dose of 1mCi of 99mTc was given IV, subsequent to which the uptake rate was measured and scintigraphy was performed. Finally, following the Na131I uptake measurement made at 24 hrs, a thyroid scan was carried out.

Nodules represented as cold features when Na131I scanning is used in cases of chronic thyroiditis, adenomatous goiter, follicular adenoma and carcinoma are visualized as hot features in 201TlCl scanning. A high rate of positive scan using 201TCl is seen in both primary and metastatic lesions of thyroid cancer, especially in cases of well-differentiated follicular carcinoma. Therefore, 201TlCl scanning is useful for recongizing metastasis in the neck area. 201TlCl, however, does not concentrate in cystic lesions.

Additional scanning utilizing Na131I and 99mTc O$_4^-$ is necessary, due to difference in their metabolism. 99mTcO$_4^-$ usually concentrates in carcinomatous lesions of both well differentiated and undifferentiated types, so 99mTcO$_4^-$ scanning is useful for detecting malignant lesions. Also, 99mTcO$_4^-$ scanning usually shows a larger cold nodule than Na131I scanning. The difference is probably due to the time elapsed after administration of the radionuclides. Such a phenomenon is seen in cases of follicular carcinoma with or without papillary foci.

In thyroid scintigraphy, therefore, it is necessary to use an adequate combination of various radionuclides such as Na131I, 99mTcO$_4^-$ and 201TlCl for differential diagnosis.