A Radioimmunoassay for Measurement of 3, 3′, 5′-Triiodothyronine (Reverse T₃)

Atsushi Takagi, Yoko Isozaki, Kunio Kurata and Shigenobu Nagataki*

1. INTRODUCTION

Radioimmunoassay (RIA) of 3, 3', 5'-triiodo-L-thyronine (reverse T₃ or rT₃) has been reported by various investigators which mentioned many clinical data about human serum levels of rT3 (1-9). We have also developed a sensitive, specific and reproducible RIA system for the measurement of rT₃ in unextracted human serum using specific antiserum against rT3 and very high specific radioactivity 125I-rT3.

2. MATERIALS AND METHODS

Reagents. Reverse T₃ was kindly supplied from Dr. H. J. Cahnmann of National Institutes of Health, Bethesda, Md. L-thyroxine (T₄), 3, 3', 5-triiodo-L-thyronine (T₃) and 3, 5-diiodo-Lthyronine were obtained from Sigma. 3-monoiodo-L-thyronine $(3-T_1)$, 3'-monoiodo-L-thyronine (3'-T₁), and 3, 3'-diiodo-L-thyronine (3, 3'-T₂) were obtained from Henning Berlin GMBH. Bovine serum gamma globulin and bovine serum albumin (BSA) were obtained from Miles Laboratories, Inc. 8-anilino-1-naphthalen-sulfonic acid (ANS), polyethylene glycol (PEG)-6,000 and charcoal (Norit A) were obtained from Eastman Kodak Co., Wako Pure Chemical Industries Ltd. and American Norit Company, Inc., respectively. Na¹²⁵I was obtained from Radio Chemical Center, Amersham.

Dainabot Radioisotope Laboratories, Ltd., 344 Minoridai, Matsudo-shi, Chibaken

受付:52年11月8日 最終稿受付:53年1月31日

別刷請求先:千葉県松戸市稔台344 (●271)

高木 淳

ダイナボット RI 研究所

Preparation of antiserum. Reverse T₃ was conjugated to BSA by a modifications of coupling method of T₃ to proteins (10). Ten mg of BSA was dissolved in 5 ml of distilled water, and 6 mg of "Morpho CDI" (1-cyclohexyl-3 (2-morpho-linoethyl)-carbodiimide metho-p-toluenesulfonate) was added to it. Four mg of rT3 dissolved in 5 ml of dimethylformamide was then added to the solution dropwise under stirring. The pH was adjusted to 5.5 with 0.1 N HCl or 0.1N NaOH. The solution was kept at room temperature under constant stirring in dark place for 20 hours. The reaction mixture was then dialyzed against distilled water for 72 hours and stored at -20° C. In order to calculate the coupling yield, about 10,000 cpm (approximately 0.3 pg) of 125I-rT3 was added to the rT3 solution and the recovery was calculated by counting the total activities of the final products, and the coupling yield was found to be about 80%. One hundred µg of rT₃ coupled with BSA was suspended in 2 ml of distilled water and emulsified with 2 ml of complete Freund's adjuvant. This emulsion was injected into toe-pade and neck of each rabbit. The immunization were repeated at the time intervals of one month. Blood for antiserum was drawn at 7 days after the third injection.

Preparation of 125I-rT₃. (a) Preparation of 125IrT₃ of high specific activity by radioiodination. High specific activity 125I-rT3 was prepared by a modification of the method of Weeke and Örskov (11). Two hundred ng of 3-T₁ dissolved in 10 μl of 0.01 N NaOH was added to 3 mCi of Na¹²⁵I. The pH was adjusted to 7.5 with 0.5 M phosphate buffer. Twenty second after the addition of 25 μl of chloramine-T (3.5 mg/ml) the reaction was stopped by adding 100 μl of sodium metabisulfite (3.5 mg/ml).

Key Words: Radioimmunoassay, Reverse T3, 125IrT₃, Polyethylene glycol (PEG), 8-anilino-1-naphthalensulfonic acid (ANS)

^{*} The Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

A sephadex G-25 (fine) column (1×30 cm) was used for the separation of $^{125}\text{I-rT}_3$ (9). The column was eluted with 0.01 N NaOH. The purity of the labeld rT₃ was checked by thin-layer chromatography using acetone: water: ammonia (35:4:1) as the developer. The Rf values of 3-T₁, rT₃, T₃ and T₄ in this solvent system were 0.43. 0.07, 0.55 and 0.38, respectively.

(b) Preparation of ¹²⁵I-rT₃ of low specific activity by isotopic exchange reaction. Two hundred ng of rT₃ was used instead of 3-T₁, and prepared and purified with the same method as described in the preparation of ¹²⁵I-rT₃ of high specific activity. The specific activity of the ¹²⁵I-rT₃ was calculated by the self-displacement method (11).

Preparation of rT₃-free serum. Reverse T₃-free serum was prepared by the method by Mitsuma for T₃ and T₄ (10). One hundred ml of normal human serum was incubated with 100 g of Norit A charcoal for 3 hours at 25°C, and then the mixture was centrifuged at 20,000 g. More than 99% of rT₃ was removed from the human serum. This was confirmed by using 125 I-rT₃ as a tracer.

Incubation system. One hundred μl of standard rT₃ (dissolved in rT₃-free serum) or of unknown sample and ¹²⁵I-rT₃ (diluted with 0.1 M borate buffer pH 8.6 containing 0.1% BSA) were added to each reaction tube. Then 400 μl of anti-rT₃ serum (diluted with 0.1 M borate buffer pH 8.6 containing 7.5 mg/ml of bovine serum gamma globulin and 0.9 mg/ml of ANS) were then added to the reaction tube. The mixture was incubated for 20 hours at 4°C. The bound and free rT₃ were separated by PEG method (12). One ml of 25% PEG was added to the incubation mixture and the mixture was centrifuged at 2,200 g for 15 minutes at 25°C and the radioactivity of the precipitates was counted in a well scintillation counter.

Sources of sera. Serum was obtained from 59 nomal subjects, 15 untreated hyperthyroid patients with Graves' disease and 10 patients with primary hypothyroidism. Sera were also obtained from 10 normal pregnancy, 3 complete starvation and 30 anorexia nervosa. The heparinized and EDTA treated (1 μ U and 1 mg/ml) plasma samples were collected from four normal subjects, to see the effect of heparin and EDTA.

3. RESULTS

Specific activity and sensitivity. The specific activity of $^{125}\text{I-rT}_3$ which is obtained by diiodination of phenolic ring of 3-T₁ is calculated to be 6,600 μ Ci/ μ g theoretically and calculated to be 4,500–5,500 μ Ci/ μ g by self displacement method. When high specific activity of $^{125}\text{I-rT}_3$ was used for RIA, a significant inhibition of $^{125}\text{I-rT}_3$ binding to antibody could be detected at rT₃ concentrations as low as 1 pg/tube, and linear dose-response curve was obtained from 6 pg/tube to 200 pg/tube (Fig. 1). On the other hand, when low specific activity of $^{125}\text{I-rT}_3$ (400–500 μ Ci/ μ g) was used, we could not detect rT₃ less than 10 pg/tube.

Specificity. The cross-reactivities of the antirT₃ serum with other thyroid hormone analogues are shown in Table 1. The relative reactivities of various compounds were calculated as the amounts that gave 50% inhibition of the binding of ¹²⁵IrT₃ to antibody. We found that T₄ and T₃ which present in large quantities in the serum showed no significant effect on the binding of ¹²⁵I-rT₃ to the antibody. But in the various thyroid hormone analogues, 3'-T₁ cross-reacted significantly.

Effect of ANS. In order to inhibit the binding of rT₃ to serum protein, ANS, which is known as a inhibitor of T₃ and T₄ to TBG, was added to the

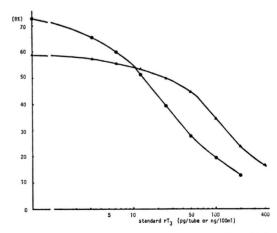


Fig. 1 Comparison of standard curve, using high specific activity (4,500-5,500 μCi/μg) — — and low specific activity (400-500 μCi/μg) — — as a tracer, and final dilution of antiserum were 1:70,000 and 1:2,500, respectively.

RIA for rT₃

incubation mixture. Various concentrations of ANS ranging from 90 to 1444 μ g/tube were added to different quantities of TBG. Fig. 2 showed that the binding percent of ¹²⁵I-rT₃ to antibody was maximum at ANS concentration of 360 μ g/tube in all samples.

Effect of dilution experiments. Effect of serum dilution on the measurement of rT_3 was studied

Table 1 Relative reactivity of various iodinated compounds with rT₃ antibody*

Compounds	Relative Reactivity	
L-rT ₃	100	
L-T ₄	0.009	
L-T ₃	< 0.0001	
$3, 5-L-T_2$	< 0.0001	
3, 3'-L-T ₂	0.009	
3-L-T ₁	0.0009	
3'-L-T ₁	0.12	
L-MIT	< 0.0001	
L-DIT	< 0.0001	

^{*} The relative reactivities of various compounds were calculated as the amounts that resulted in 50% inhibition of the binding of labeled hormone to antibody.

with serum diluted with rT₃-free serum using the high and low specific activity of ¹²⁵I-rT₃. When high specific activity of ¹²⁵I-rT₃ was used, a good linearity was obtained. But when low specific activity was used, the good linearity was not observed (Fig. 3, a)

Effect of concentration of serum protein. In

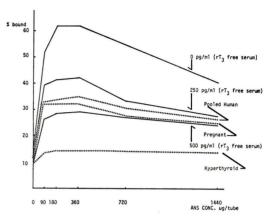


Fig. 2 Effect of addition of increasing quantities of ANS to different serum samples on the binding of ¹²⁵I-rT₃ antiserum.

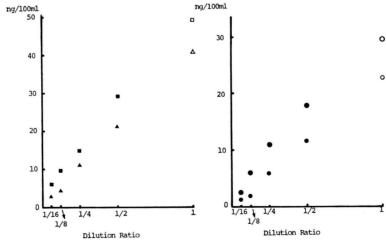


Fig. 3a Dilution serum sample with rT₃ free serum were evaluated rT₃ value, using both high specific activity and low specific activity as a tracer.

and △, ○ and ○ are indicated same sample.

; sample before dilution, measured with low specific activity of ¹²⁵I-rT₃ as a tracer.

; sample before dilution, measured with high specific activity of ¹²⁵I-rT₃ as a tracer.

; sample after dilution, measured with low specific activity of ¹²⁵I-rT₃ as a Tracer.

, ●; sample after dilution, measured with high specific activity of ¹²⁵I-rT₃ as a tracer.

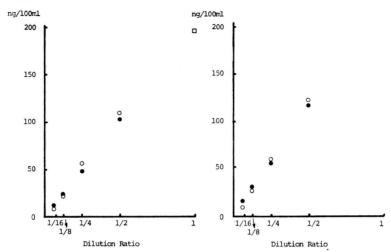


Fig. 3b Effect of serum protein on the measurement rT₃ value. □; sample before dilution.

•; sample after diluted with rT₃ free serum. ○; sample after diluted with 0.9% NaCl.

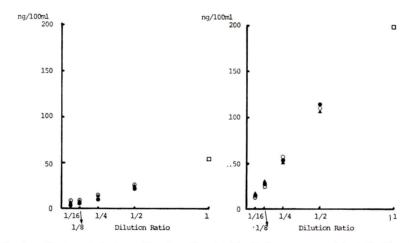


Fig. 3c \bullet , \blacktriangle and \bigcirc show rT₃ value diluted with rT₃ free serum enriched 10, 20 and 40 mg/ml of human gamma globulin, respectively.

order to clarify the effect of serum protein on the measurement of rT₃, test sera were diluted with 0.9% NaCl or rT₃-free serum. The results obtained with both diluents were essentially identical and good quantitativities were demonstrated by good linearity of the curve as is shown in Fig. 3, b. In the experiment where sera diluted with rT₃-free serum containing different concentrations of human gamma globulin were used, the similar results were obtained (Fig. 3, c).

Recovery experiments. Reverse T₃ were added

to sera from euthyroid, hyperthyroid and hypothyroid patients to contain 6.25 to 100 ng/100 ml. These samples were assayed using both high and low specific activity of ¹²⁵I-rT₃. The recovery of rT₃ was good with high specific activity of ¹²⁵I-rT₃, while poor with low specific activity of ¹²⁵I-rT₃ (Table 2).

Reproducibility. The within assay precision was evaluated by ten replicates determinations. Three different samples were measured and these rT₃ values were 20.0 ± 2.0 , 37.5 ± 2.6 and 131 ± 1.7 ng/

RIA for rT_3 279

100 ml (mean \pm SE), respectively. The reproducibility between assay was also evaluated by 15 times determinations using the same samples, and found to be 18.3 ± 0.5 , 36.7 ± 0.6 and 149.3 ± 0.34 ng/100 ml (mean \pm SE), respectively.

Effec of heparinized and EDTA treated plasma on the measurement of rT₃. Reverse T₃ levels of serum, heparinized plasma, and EDTA treated

Table 2 Recovery of rT₃ added to the sera from the subjects with various thyroidal states and measured with both high specific activity and low specific activity of ¹²⁵I-rT₃ as a tracer.

rT ₃ Added	Initial Serum rT ₃ (ng/100 ml)		Recovery (%)	
(ng/ 100 m <i>l</i>)	High Specific Activity	Low Specific Activity	High Specific Activity	Low Specific Activity
6.3	7.6	9.1	107.8	129.4
12.5			102.2	119.6
25.0			105.6	115.5
50.0			116.2	107.3
100.0			177.0	117.6
6.3	10.1	18.3	105.3	128.7
12.5			105.5	118.3
25.0			119.9	116.4
50.0			118.7	105.8
100.0			121.4	107.7
6.3	22.8	29.8	107.3	117.9
12.5			105.7	116.2
25.0			117.8	110.3
50.0			103.8	101.5
100.0			99.8	98.2
6.3	41.3	49.8	96.7	111.8
12.5			103.8	108.2
25.0			114.2	103.0
50.0			120.5	108.9
100.0			112.4	97.1

plasma from same 4 normal subjects were measured, and rT₃ values were 27.4 ± 0.9 , 26.9 ± 0.8 and 28.3 ± 1.1 ng/100 ml (means \pm SE), respectively.

Serum rT₃ levels in various states. Table 3 presents data on serum rT₃ concentration in various states. The values for rT₃ in 59 normal subjects averaged 27.9 ± 0.9 ng/100 ml (mean \pm SE) and ranged from 17.6 to 52.3 ng/100 ml. Serum rT₃ concentration significantly increased in patients with Graves' disease (168.1 \pm 13.8 ng/100 ml, from 104 to 267.0 ng/100 ml), normal pregnancy, complete starvation, and anorexia nervosa, and decreased significantly in untreated primary hypothyroidism (9.8 \pm 1.0 ng/100 ml, from 3.3 to 13.0 ng/100 ml).

4. DISCUSSION

We have developed a RIA system for the measurement of serum rT3 by using a highly specific antiserum and 125I-rT3 with high specific activity. Theoretically, two atoms of radioactive iodine can be tagged to one phenolic ring of thyronine, and therefore high specific activity can be more easily obtained with rT₃ than T₃. The highest possible specific activity of 125I-rT3 that can be obtained for dijodinated to phenolic ring is 6,600 μ Ci/ μ g, if one assumes an isotopic abundance of 100% for ¹²⁵I (17.2 μ Ci/ μ g). Gavine (8), Burman (9) and Mainhold (5) have previously reported that 125I-rT3 was prepared from the iodination of 3,3'-T2, and specific activity was 300, 500 and 3,300 $\mu \text{Ci}/\mu \text{g}$, respectively. In this study, however, 125I-rT3 was prepared from diiodination of 3-T₁, therefore it is theoretically expected that ¹²⁵I-rT₃ with highest specific activity can be obtained by chloramin-T method. The high sensitivity of our assay method was mainly due to the high

Table 3 Serum rT₃, T₃ and T₄ concentrations in various thyroidal states

Group	n	rT_3 (ng/100 m l)	T_3 (ng/100 m l)	T_4 (ng/100 m l)
Normal	59	27.9± 0.9*	123± 3	9.6 ± 0.4
Hyperthyroidism	15	168.1 ± 13.8	526 ± 37	23.4 ± 1.8
Hypothyroidism	10	9.8 ± 1.0	44 ± 4	3.9 ± 0.4
Normal Pregnancy	10	36.4 ± 2.2	$180\pm$ 5	14.5 ± 1.5
Complete Starvation	3	38.0 ± 9.8	$70\pm$ 8	**
Anorexia Nervosa	30	$41.6\pm~4.8$	84± 5	**

^{*} Means ± SE

^{**} Not examined

specific activity of the 125 I-rT₃ used. The very high specific activity of the 125 I-rT₃ enable us to use only 0.2–0.3 pg of 125 I-rT₃ per assay tube which permits us to detect 1 to 200 ng/100 ml of rT₃ in the serum. From our experiment, when 125 I-rT₃ of low specific activity (400–500 μ Ci/ μ g) was used, we could not obtain good results both in the serum dilution test and recovery test from serum at rT₃ concentration of 7–20 ng/100 ml. Since the concentration of rT₃ in serum is considered to be lower than that of T₃ because of its rapid metabolism (1, 4), high sensitive assay is required for the rT₃ RIA.

The assay procedure described here satisfies requirements for the measurement of rT₃ in the presence of serum protein: a) by adding ANS, binding of rT₃ to serum proteins were blocked in various kinds of serum such as those from normal, pregnant, hypothyroid and hyperthyroid, b) rT₃ added to sera at widely different concentrations were quantitatively recovered, and the serum dilution test showed that human or animal sera containing gamma globulin at different concentrations can be measured quantitatively, c) due to the remarkably low cross-reaction of T3 and T4 with the rT₃ antibody, T₃ and T₄ in serum do not affect on the measurement of rT₃. d) the precision within an assay and reproducibility between assays were excellent. Accordingly, we conclude that our RIA system described here is the most sensitive, reproducible and quantitative method for the measurement of rT3 level in serum.

REFERENCES

- Chopra I: A Radioimmunoassay for Measurement of 3, 3', 5'-Triiodothyronine. J Clin Invest 54: 583, 1974
- Chopra IJ, Chopra U, Smith SR et al: Reciprocal Changes in Serum Concentrations of 3, 3', 5'-Triiodothyronine and 3, 3', 5-Triiodothyronine in Systemic Illnesses. J Clin Endocrinol Metab 41: 1043, 1975
- Chopra IJ, Sack J, Fisher AD: Circulating 3, 3', 5'-Triiodothyronine in the Human Newborn. J Clin Invest 55: 1137, 1975.
- Chopra IJ: An assessment of Daily Production and Significance of Thyroidal Secretion of 3, 3', 5'-Triiodothyronine in Man. J Clin Invest 58: 32, 1976
- 5) Meinhold H, Wenzel KW and Schurnbrand P: Radioimmunoassay of 3, 3', 5'-L-Triiodothyronine

- in Human Serum and its Application in Different Thyroid States. Z Klin Chem Klin Biochem 13: 571, 1975
- Nicod P, Burger A, Staeheli V et al: A Radioimmunoassay of 3, 3', 5'-Triiodothyronine in Unextracted serum: Method and Clinical Results, J Clin Endocrinol Metab 42: 823, 1976
- Burman KD, Dimond RC, Earll JM et al: Sensitivity to Lithium in Treated Graves' Disease: Effect on T₄, T₃ and Reverse T₃. J Clin Endocrinol Metab 43: 606, 1976
- 8) Gavin L, Castle J, Mcmahon F et al: Extrathyroidal Conversion of Thyroxine to 3, 3', 5'-Triiodothyronine and to 3, 5, 3'-Triiodothyronine in Humans, J Clin Endoclinol Metab 44: 733, 1977
- Burman KD, Dimond RC, Wright FD et al: A Radioimmunoassay for 3, 3', 5'-L-Triiodothyronine: Assessment of Thyroid Gland Content and Serum Measurements in Conditions on Normal and Altered Thyroidal Economy and Following Administration of Thyrotropin Releasing Hormone and Thyrotropin. J Clin Endocrinol Metab 44: 660 1977
- 10) Mitsuma T, Colucci J, Shenkman L et al: Rapid Simultaneous Radioimmunoassay for Triiodothyronine and Thyroxine in Unextracted serum. Biochemical and Biophysical Research Communications 46(6): 2107, 1972
- Weeke J and Orskov H: Synthesis of ¹²⁵I Monolabelled 3, 5, 3'-Triiodothyronine and Thyroxine of Maximum Specific Activity for Radioimmunoassay. Scand J Clin Lba Invest 32: 357, 1973
- 12) Shaw W, Schulman L and Spierto FW: The Carrier Effect of Gamma Globulin When A Polyethylene Glycol Separation Technique is Used in Digoxine Radioimmunoassay. Clinical Chimica Acta 60: 385, 1975

ABSTRACT

A sensitive, specific and reproducible radioimmunoassay (RIA) for the measurement of 3, 3' 5'-triiodothyronine (rT₃) in serum without extraction is described. A highly specific rT₃ binding antiserum was prepared by immunization of rabbits with rT₃-bovine serum albumin conjugate. A method for the preparation of ¹²⁵I-rT₃ of very high specific activity which was iodinated from 3monoiodothyronine was developed. Utilizing this RIA, a mean (±SE) serum rT₃ level of normal subject was 27.9±0.9 ng/100 ml (n=59). Serum rT₃ was found to be increased in hyperthyroidism (168.1±13.8 ng/100 ml, n=13), normal pregnancy RIA for rT₃ 281

 $(36.4\pm2.2 \text{ ng}/100 \text{ m}l, n=10)$, complete starvation $(58.0\pm9.8 \text{ ng}/100 \text{ m}l, n=3)$, anorexia nervosa $(41.6\pm4.8 \text{ ng}/100 \text{ m}l, n=30)$. And the serum concentration was decreased in hypothyroidism

 $(9.8\pm1.0 \text{ ng}/100\text{m}I, n=10)$. The method described here satisfies requirements for measurement of rT₃ by RIA.

要 旨

3',3',5'-トリョードチロニン (rT3) のラジオイムノアッセイ

高木 淳 礒崎 陽子 倉田 邦夫 長滝 重信*

㈱ダイナボットラジオアイソトープ研究所(松戸市稔台 344) * 東京大学医学部第三内科(東京都文京区本郷7の3の1)

血中 3, 3′, 5′-トリョードチロニン (rT_3) のラジオイムノアッセイ (RIA) による測定法を検討した。抗 rT_3 抗体は,ウシ血清アルブミンと結合させた rT_3 を,家兎に投与して得た。3, 5, 3′-トリョードチロニン (T_3) 及びチロキシン (T_4) との交叉反応は,それぞれ,0.0001%以下,0.009% であり,本法による, rT_3 測定値は, T_3 及び T_4 の影響をほとんど受けていないと考えられる.

 125 I-rT₃ は、 3 -モノヨードチロニンをクロラミン T 法で標識し、 4 500 \sim 5,500 μ Ci/ μ g の高比放射能を得た.本法の測定によって得た正常者 59人の血中 rT₃ 値は、27.9 \pm 0.9 ng/100m/ (Mean \pm SE) であった.又,甲状腺機能亢進症、正常妊婦、絶食者および、神経性食思不振症の血中 rT₃ 値も、正常者に比較し、高値を示し、甲状腺機能低下症において、正常より低値を示した.