liver volume and surface area demonstrate the actual volume and area, remains the problem. However, our results suggest that this method is very useful in following the clinical course of patients with liver diseases.

**Evaluation of Scintigraphic Technique for Liver Imaging**

H. OGURA, M. FURUDATE, K. SUZAKI, Y. MORITA and S. HORITA

*Department of Radiology, Hokkaido University School of Medicine, Sapporo*

Scintigraphic technique for liver imaging employed at Hokkaido University Hospital during January, 1968 to August, 1976 were evaluated.

The material reviewed consists of 4552 examinations. The radionuclides used were $^{198}$Au-colloid, $^{99m}$Tc-S-colloid, $^{99m}$Tc-Sn-colloid and $^{99m}$Tc-phytate.

One-third of the scanned images obtained by using $^{198}$Au-colloid showed poorer resolution compared with the images of scinticamera with or without blended filter using $^{99m}$Tc-phytate.

It was rather difficult to find optimal settings when obtaining blended images, and more than a half of which appeared to be unsatisfactory for diagnostic purpose.

Whereas, the images without blended filter produced relatively satisfactory result in cases that the focussing were correct. No significant difference, however, was seen among these three methods, as far as the diagnostic accuracy was concerned.

The phantom experiments demonstrated no observable difference between scanned images with $^{198}$Au and these with $^{99m}$Tc, but the images by scinticamera revealed superior result with $^{99m}$Tc probably due to the different use of collimator.

It was revealed that the images by camera showed better resolution when increasing radioactivity, and that 300,000 counts appeared to be optimal for routine use.

We are routinely performing scintigraphic examinations for the liver from A-P, P-A, right lateral and left lateral directions, either with rectilinear scanner using $^{198}$Au-colloid or with scinticamera using $^{99m}$Tc-phytate. $^{99m}$Tc-Sn-colloid is also used in cases of studying the more detail the spleen.

The blended filter is not in use at present.

**Diagnosis of Primary Hepatoma by Radioisotope Image Processing with a Digital Filter and Estimation of Serum AFP**

Y. YUMOTO*, K. MITANI*, H. YAMAMOTO**, T. MISAKI**, H. NAGASHIMA**

*The First Department of Internal Medicine Okayama University Medical School, Okayama, Japan*

**School of Engineering Okayama University, Okayama*

***Faculty of Engineering, Kyoto University, Ugi, Kyoto***

Recently digital computer system is commonly used for scintillation camera data processing. Correction of scintillation camera field inequality is one of important problem. But, clinical evaluation of the correction system is not established. In order to reduce the effect of the deteriorating cases or to enhance the information contained in image, a digital filter using the high speed Hadamard transform of RI image is presented.

The observed image is expressed by the convolution of true radioisotope distributions and the impulseresponse of instruments. For improving the resolving power of the system, the Hadamard transform of observed digital image is performed as follow:

$$G'(u, v) = [H(u, v)][g'(u, v)] [H(u, v)],$$

where $g'(u, v)$...
is the observed digital image, \([H(u, v)]\) is the Hadamard matrix of order 64. Here, a weighting operation to \([G(u, v)]\), is performed, and its result is transformed by means of the inverse Hamadard transformation. As a result, the high frequency components are moderately intensified and can be enhanced the information in RI image.

It was confirmed that this image procedure was useful by applying to RI image of the liver phamtome containing plastic cold bolle or liver image of 11 patients with hepatoma. With this method, calculation time was shorten in comparison with conventional methods for image processing. Diagnosis of the primary liver tumors were improved by this method and serial determination of AFP.

**Comparative Study Between a Conventional Gamma Camera and PHO/CON on Liver Scintigraphy**

N. KATSUYAMA*, K. KAWAKAMI*, S. TADA*, S. MOCHIZUKI*,
H. KAMEDA**, N. SAEGUSA**

*Department of Radiology, *Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan

**Materials and methods**

Liver scintigraphies were performed on 250 patients by a gamma camera and PHO/CON. A comparative study was performed on 50 patients of them, who had suspicious impressions of space occupying lesion (SOL) in the liver.

20 or 30 minutes after injection of 2 or 3 mCi of \(^{99m}\)Te-phytate, anterior, posterior and right lateral views were taken by a HP type gamma camera (Searle Radiographics Inc.) with a parallel colimator. Soon after, anterior and posterior views on supine position and lateral views on left decubitas position were taken by multiplane tomographic scanner (PHO/CON, Searle Radiographics Inc.).

**Result**

Two cases had no impression of SOL by gamma camera, but was discriminated single SOL by PHO/CON. In 4 cases, PHO/CON detected multiple SOL although the gamma camera discriminated single SOL. In 8 cases, single SOL was suspicious by the gamma camera, and by PHO/CON, single SOL was clearly seen. In 25 cases, multiple SOL were seen by the gamma camera, and the number and shape of SOL were more clearly seen by PHO/CON than by the gamma camera.

**Discussion**

PHO/CON is more excellent than a gamma camera for detectability of SOL in liver scintigraphy.

**Functional Imaging of Liver by \(^{13}N\)-Ammonia**

E. TANAKA***, T. TOMITANI****, Y. KASHIDA*****, K. YOSHIKAWA******, K. SUZUKI******,
K. TAMATE******, K. FUKUHISA******, K. OKUDA*******, H. MUSHA*******, H. KOEN******
and H. OKUBO******

*Division of Clinical Research National Institute of Radiological Sciences (NIRS) Chiba, Japan
**Hospital, NIRS, ***Division of Physics, NIRS, ****Division of Environmental Hygine, NIRS
*****Division of Technical Services, NIRS
******First Department of Internal Medicine, Chiba University, Chiba, Japan

Ammonia has been known to be an inducing agent of hepatic coma associated with liver cirrhosis.

In order to establish a non-invasive method of investigating the portal circulation and the metabolism of ammonia at liver the following