Brain Scanning with 99mTc-citrate

Department of Radiology, Kitasato University, Kanagawa Japan

In 1941, Dickens reported that the concentration of citrate is higher in tissues with malignant tumors than in normal tissues. Following this theory, Benes et al. reported that if the scanning is performed by means of 99mTc-citrate, it accumulates in large amounts in malignant tumors, especially brain tumors, bone tumors or metastatic tumors. He concluded that 99mTc-citrate was useful to obtain these scans. We used a Solcocitrin Kit that labels citrate with 99mTc-pertechnetate, and we wish to report the foundational and clinical findings that we obtained. We were able to obtain 99mTc-citrate simply by mixing a vial of Solcocitrin Kit and 1-5 ml of 99mTc-pertechnetate.

For purposes of foundational study, we divided rats into 3 groups, and intravenously injected 99mTc-pertechnetate, 99mTc-DTPA and 99mTc-citrate into each respectively. We killed these rats a few at a time; some immediately after; some 15 min after; some 30 min after; some 1 hour after; some 2 hours after; and the remainder 3 hours after injection. Then we measured the rate of distribution of radiopharmaceuticals in the blood, liver, pancreas, kidney, spleen and muscles of each rat, and measured the velocity of its disappearance in each organ. To discover the distribution of radiopharmaceuticals in the organs we also made autoradiograms, killing rats at several intervals in time.

For clinical study, we performed brain scanning 30 min after injection of 20 mCi of 99mTc-citrate in 47 patients; including 15 patients with suspected brain tumor, 2 patients after surgery for brain tumor, II patients with suspected metastatic brain tumors and 19 other patients. Then we compared these with scanning by means of 20 mCi of 99mTc-pertechnetate. We were able to obtain clearer images of brain scanning with 99mTc-citrate than with 99mTc-pertechnetate. In addition, we were able to obtain clearer and more useful images when the patients' tumors was located at the base of the brain, because little 99mTc-citrate accumulated in his salivary glands. In the case of children—The radiopharmaceuticals usually accumulated in the choroid plexus because they can drink but little KCl, and comparatively speaking, 99mTc-citrate did not accumulate very much. This also one of the advantages of this pharmaceutical.

We conclude and report that brain scanning, especially at the base of the brain, with 99mTc-citrate was very useful to diagnose brain tumors.

Clinical Utility of Brain Scan with 99mTc-EHDP

S. KOBAYASHI, T. MAEDA, K. ITOH, N. TONAMI, K. HISADA
Department of Nuclear Medicine School of Medicine Kanazawa University, Kanazawa

Each of 80 cases, including patients who were examined more than once, was studied with two separate brain scans performed sequentially after the injection of 10-15 mCi of 99mTc-pertechnetate or 10-15 mCi of 99mTc-diphosphonate.

The resulting scans were qualitatively compared, and target-to-nontarget intensity ratio of each scan was determined.

A prospective study utilizing both 99mTc-per-technetate and 99mTc-EHDP was undertaken to evaluate the recent observation that some cerebral infarctions are better defined with 99mTc-labeled phosphate complex than with 99mTc-pertechnetate and that reverse pattern may occur in cerebral tumors. Diagnoses were established by surgery, cerebral roentgen angiography or by clinical course. We examined 80 cases in this study, of which 46 were cerebral infarction, 24 were brain...
tumor including meningioma (5), astrocytoma (1), glioblastoma (3), oligo dendroglioblastoma (1), acoustic neurinoma (3), secondary brain tumor (10), histological unknown (1), and other lesions which included A-V malformation with intracerebral hematoma (2), A-V malformation without intracerebral hematoma (2), subdural hematoma (1), brain abscess (1), giant cell tumor (1), secondary bone tumor (3).

The target-to-nontarget intensity ratio in cerebral infarction was greater with 99mTc-EHDP than with 99mTc-pertechnetate in 27 cases. In contrast to cerebral infarction, the target-to-nontarget intensity ratio was greater with 99mTc-pertechnetate than with 99mTc-EHDP in 14 cases.

In conclusion, these results indicate that this dual method is helpful in differentiating cerebral tumor from cerebral infarction.

Functional Image of Regional Cerebral Blood Flow (1) Method

*Division of Nuclear Medicine, Osaka University
**First Department of Internal Medicine, Osaka University

The functional imaging of the regional cerebral blood flow (rCBF) was developed using an Anger-type gamma camera and an on-line minicomputer system. The data-processing system consists of an I/O unit, a CPU (16 KW), a MT, a typewriter and a CRT display. The programs were written in an assembly language and stored in the initial 4K words of the core memory and the remaining 12K words were allocated to the images and the wash-out curves.

In this study, 3–5 mCi of Xe-133 in saline solution was injected rapidly into the internal carotid artery and 130 serial digitalized images of one second frames were stored on the MT. Hyper-ventilation, CO$_2$ inhalation and/or vascular compression tests, if necessary, were performed afterwards and the serial images after the repeated Xe-133 injection were also stored on the MT.

The data were processed as follows; For the first place, the processing area was set in the accumulated image displayed on the CRT. Then the wash-out curves in every 8 mm*8 mm element in the area were extracted from the serial images on the MT. The blood flow rates in every element were calculated as rCBF-initial (ml/100 g/min) using the least square method after the logarithmic conversion of the curves. The statistical errors due to the random nature of the radioactive decay were then calculated and expressed in standard deviations of the finally calculated values.

The calculated parameters were rearranged in the corresponding matrices and displayed on the CRT in a gray map. Type printings of them in 2 digitdecimal numbers in a map format were also carried out. The changes of rCBFs before and after the tests were also displayed and printed out in both absoluted differences and percent changes.

Functional Image of Regional Cerebral Blood Flow (2) Clinical Applications

H. Abe*, K. Kimura** and T. Aoyama**
*First Department of Internal Medicine, Osaka University
**Division of Nuclear Medicine, Osaka University

The clinical applications of rCBF functional image were performed in normal volunteers and 40 patients with intracranial disease.

The gamma camera was set at the skull. 5 mCi of Xe-133 in saline solution was injected into the internal carotid artery at rest and after each test.