Brain Scanning with 99mTc-citrate

Department of Radiology, Kitasato University, Kanagawa Japan

In 1941, Dickens reported that the concentration of citrate is higher in tissues with malignant tumors than in normal tissues. Following this theory, Benes et al. reported that if the scanning is performed by means of 99mTc-citrate, it accumulates in large amounts in malignant tumors, especially brain tumors, bone tumors or metastatic tumors. He concluded that 99mTc-citrate was useful to obtain these scans. We used a Solcocitran Kit that labels citrate with 99mTc-pertechnetate, and we wish to report the fundamental and clinical findings that we obtained. We were able to obtain 99mTc-citrate simply by mixing a vial of Solcocitran Kit and 1-5 ml of 99mTc-pertechnetate.

For purposes of foundermental study, we divided rats into 3 groups, and intravenously injected 99mTc-pertechnetate, 99mTc-DTPA and 99mTc-citrate into each respectively. We killed these rats a few at a time; some immediately after; some 15 minutes after; some 30 minutes after; some 1 hour after; some 2 hours after; and the remainder 3 hours after injection. Then we measured the rate of distribution of radiopharmaceuticals in the blood, liver, pancreas, kidney, spleen and muscles of each rat, and measured the velocity of its disappearance in each organ. To discover the distribution of radiopharmaceuticals in the organs we also made autoradiograms, killing rats at several intervals in time.

For clinical study, we performed brain scanning 30 minutes after injection of 20 mCi of 99mTc-citrate in 47 patients; including 15 patients with suspected brain tumor, 2 patients after surgery for brain tumor, II patients with suspected metastatic brain tumors and 19 other patients. Then we compared these with scanning by means of 20 mCi of 99mTc-pertechnetate. We were able to obtain clearer images of brain scanning with 99mTc-citrate than with 99mTc-pertechnetate. In addition, we were able to obtain clearer and more useful images when the patients' tumors was located at the base of the brain, because little 99mTc-citrate accumulated in his salivary glands. In the case of children—The radiopharmaceuticals usually accumulated in the choroid plexus because they can drink but little KCl, and comparatively speaking, 99mTc-citrate did not accumulate very much. This also one of the advantages of this pharmaceutical.

We conclude and report that brain scanning, especially at the base of the brain, with 99mTc-citrate was very useful to diagnose brain tumors.

Clinical Utility of Brain Scan with 99mTc-EHDP

S. Kobayashi, T. Maeda, K. Itoh, N. Tonami, K. Hisada

Department of Nuclear Medicine School of Medicine Kanazawa University, Kanazawa

Each of 80 cases, including patients who were examined more than once, was studied with two separate brain scans performed sequentially after the injection of 10-15 mCi of 99mTc-pertechnetate or 10-15 mCi of 99mTc-diphosphonate.

The resulting scans were qualitatively compared, and target-to-nontarget intensity ratio of each scan was determined.

A prospective study utilizing both 99mTc-per-technetate and 99mTc-EHDP was undertaken to evaluate the recent observation that some cerebral infarctions are better defined with 99mTc-labeled phosphate complex than with 99mTc-pertechnetate and that reverse pattern may occur in cerebral tumors. Diagnoses were established by surgery, cerebral roentgen angiography or by clinical course. We examined 80 cases in this study, of which 46 were cerebral infarction, 24 were brain