Comparative Study of 111In-Bleomycin Accumulation with 67Ga-Citrate and 111In-Chloride

Yasuhiko Ito, Tsuneji Ichikawa, Akira Muranaka, Tsuneko Yokobayashi and Yoshinari Imao

Department of Nuclear Medicine and Radiation Therapy Kawasaki Medical School Kurashiki, Japan

ABSTRACT

Tumor affinity of 111In-bleomycin (BLM) was investigated with VX-2 rabbits and the patients with lung cancer.

As the basic approach for this study the following investigation were performed: 1) the clearance of BLM from blood was compared with that of 111In-Cl$_3$; 2) the distribution of BLM in various organs of VX-2 rabbits two days after administration was compared with that of 111In-Cl$_3$; 3) after simultaneous administration of BLM and 67Ga into VX-2 rabbits the distribution of these two substances in organs was studied 2 and 3 days later; 4) the comparison was made of 67Ga being contained in urine and feces; and 5) after injecting turpentine oil into the muscle the accumulation in the inflammatory site was compared with that of 67Ga.

By administering BLM and 67Ga to patients with cancer at the interval of about one week the ratio of radioactivity in the lesion to that in the surrounding normal lung was estimated by setting ROI.

The clearance of BLM from blood required 14.5 hours while that of 111In-Cl$_3$ took 12 hours. The ratio of BLM in tumor to tissue was about the same as that of 111In-Cl$_3$ or slightly less. The ratio of tumor to muscle was BLM: 7.81, and 111In-Cl$_3$: 15.94. The clearance rate in tumor to blood was 2.68 with BLM and 3.58 with 111In-Cl$_3$.

As to the ratio of 67Ga both 2 days and 3 days after administration of BLM 67Ga showed a greater value in the tumor to tissue ratio. The tumor to muscle ratio was 67Ga: 50.57, BLM: 10.42 two days later while 3 days later it was 67Ga: 31.0 and BLM: 10.42. The excretion into urine and feces was less in 67Ga.

With clinical cases the radioactivity accumulation is higher in 67Ga.

From the above results the tumor affinity of BLM has been confirmed, but it seems not so high as to replace 67Ga.

Comparison Between 67Ga-Citrate and 111In-BLM as the Tumor Scintigram

*Department of Radiology, Hyogo Cancer Hospital, **Department of Radiology, Kobe University

We examined tumor scintigrams using 67Ga-citrate and 111In-BLM in 34 patients diagnosed of malignancy, and compared them.

Method: Scinticamera images were obtained 48 and 72 hours after injection of 2 mCi (111In-BLM) and 72 hours after injection of 2 mCi (67Ga-citrate). Considering all cases the percentage of positive scintigrams had been 73% for 67Ga and 68% for 111In-BLM. There was not so large difference in ratio between them, however positive cases using 111In-BLM were all accumulated using 67Ga-citrate. Tumor scintigrams using 67Ga-citrate showed more clearly activity in almost all cases than examined by 111In-BLM. Extensively, only 3 cases (undifferentiated cancer of the knee of unknown origin and pulmonary cancer with pneumonia) took more clearly than 67Ga-citrate. Tumor scintigrams could be accumulated at the head and neck and inquinal lesion of the malignant lymphoma, but tumor images of 111In-BLM was not so clear as 67Ga-citrate, the pulmonary and hepatic lesion clearly accumulated by
67Ga-citrate could not be found by 111In-BLM. Normal 111In-BLM scintigram, bone marrow (thoracic, lumbar vertebrae, and the pelvis) were well visualized in 26 of 34 cases, and little activity concentrated in the heart in 11 of 34 cases.

111In-BLM scan was rather difficult to find out mediastinal lesion than 67Ga-citrate. It was very difficult to find out abdominal lesion by 67Ga-citrate, because 67Ga-citrate were excreted into alimentery tract. But also it may be very difficult for 111In-BLM to find out abdominal lesion, because by 67Ga-citrate only 3 in 20 cases lumbal or pelvic lesion can be found, and only 3 in 20 cases renal lesion can be found.

Conclusion:
1. 67Ga-citrate was more sensitive in tumor than 111In-BLM.
2. 67Ga-citrate was valuable in detecting mediastinal lesion.

Tumor Scintigraphy: Comparison and Clinical Evaluation of 67Ga-Citrate and 75Se-Selenomethionine

T. OSAWA, H. HAMADA, K. HIROSE, S. SAWADA, T. FUJII, M. YANO, T. SUGANO

Department of Radiology, Kenseibu-Hamamatsu Medical Center, Hamamatsu

Introduction

In the tumor scintigraphy with 67Ga-citrate and 75Se-selenomethionine in cases with various kinds of tumor, very useful results were obtained clinically.

Method

67Ga-citrate scannings were performed 1–3 times for 1–4 days after an intravenous administration of 2 mCi, and 75Se-selenomethionine scannings several times during 10 minutes to 4 days after the administration of 100–250 μCi.

Result

Abnormal concentrations of 67Ga-citrate were noted in malignant tumors, inflammatory lesions and sarcoidosis, but no accumulation of 67Ga-citrate in benign tumors.

While non-epithelial malignancies such as malignant lymphoma, malignant thymoma, malignant melanoma and mycosis fungoides etc. and liver cell carcinoma were visualized as the hot areae on 75Se-selenomethionine scintigrams but 75Se-selenomethionine scanning were negative in inflammatory lesions, benign tumors and carcino-

mas except for liver cell carcinoma.

Conclusion

Because the half life of 67Ga-citrate is shorter than that of 75Se-selenomethionine, the administration of a large dose of 67Ga-citrate is possible, and the tumors were clearly outlined.

On the other hand, 75Se-selenomethionine was administrated only a small dose of its long half life, so the contour of the lesions was not clearly demarcated occasionally.

The abnormal concentrations of 67Ga-citrate were noted not only in malignant tumors (both epithelial and non-epithelial), but also in inflammations, sarcoidosis and normal pulmonary hili.

Therefore, the differentiation of natures of the malignant changes was almost impossible.

While 75Se-selenomethionine was concentrated only in hepatocellular carcinoma and non-epithelial malignant tumors. These results suggest that the abnormal accumulation of 75Se-selenomethionine may be considered as a sign of existence of non-epithelial malignancies except for liver cell carcinoma and its metastasis.