Comparative Study of 111In-Bleomycin Accumulation with 67Ga-Citrate and 111In-Chloride

Yasuhiko Ito, Tsuneji Ichikawa, Akira Muranaka, Tsuneo Yokobayashi and Yoshinari Imajo

Department of Nuclear Medicine and Radiation Therapy Kawasaki Medical School, Kurashiki, Japan

ABSTRACT
Tumor affinity of 111In-bleomycin (BLM) was investigated with VX-2 rabbits and the patients with lung cancer.

As the basic approach for this study the following investigation were performed: 1) the clearance of BLM from blood was compared with that of 111In-Cl$_3$; 2) the distribution of BLM in various organs of VX-2 rabbits two days after administration was compared with that of 111In-Cl$_3$; 3) after simultaneous administration of BLM and 67Ga into VX-2 rabbits the distribution of these two substances in organs was studied 2 and 3 days later; 4) the comparison was made of 67Ga being contained in urine and feces; and 5) after injecting turpentine oil into the muscle the accumulation in the inflammatory site was compared with that of 67Ga.

By administring BLM and 67Ga to patients with cancer at the interval of about one week the ratio of radioactivity in the lesion to that in the surrounding normal lung was estimated by setting ROI.

The clearance of BLM from blood required 14.5 hours while that of 111In-Cl$_3$ took 12 hours. The ratio of BLM in tumor to tissue was about the same as that of 111In-Cl$_3$ or slightly less. The ratio of tumor to muscle was BLM: 7.81, and 111In-Cl$_3$: 15.94. The clearance rate in tumor to blood was 2.68 with BLM and 3.58 with 111In-Cl$_3$.

As to the ratio of 67Ga both 2 days and 3 days after administration of BLM 67Ga showed a greater value in the tumor to tissue ratio. The tumor to muscle ratio was 67Ga: 50.57, BLM: 10.40 two days later while 3 days later it was 67Ga: 31.0 and BLM: 10.42. The excretion into urine and feces was less in 67Ga.

With clinical cases the radioactivity accumulation is higher in 67Ga.

From the above results the tumor affinity of BLM has been confirmed, but it seems not so high as to replace 67Ga.

Comparison Between 67Ga-Citrate and 111In-BLM as the Tumor Scintigram

*Department of Radiology, Hyogo Cancer Hospital, **Department of Radiology, Kobe University

We examined tumor scintigrams using 67Ga-citrate and 111In-BLM in 34 patients diagnosed of malignancy, and compared them.

Method: Scinticamera images were obtained 48 and 72 hours after injection of 2 mCi (111In-BLM) and 72 hours after injection of 2 mCi (67Ga-citrate). Considering all cases the percentage of positive scintigrams had been 73% for 67Ga and 68% for 111In-BLM. There was not so large difference in ratio between them, however positive cases using 111In-BLM were all accumulated using 67Ga-citrate. Tumor scintigrams using 67Ga-citrate showed more clearly activity in almost all cases than examined by 111In-BLM. Extensively, only 3 cases (undifferentiated cancer of the neck of unknown primary origin and pulmonary cancer with pneumonia) took more clearly than 67Ga-citrate. Tumor scintigrams could be accumulated at the head and neck and inguinal lesion of the malignant lymphoma, but tumor images of 111In-BLM was not so clear as 67Ga-citrate, the pulmonary and hepatic lesion clearly accumulated by

Presented by Medical*Online