Production of 11C and 13N Labeled Gases

National Institute of Radiological Sciences, Anagawa, Chiba, *Institute of Physical and Chemical Research, Wako-shi, Saitama

11CO, 11CO$_2$ and 13N$_2$ are well known to be useful for lung function study. They can be, however, used only at medical facilities equipped with cyclotrons because of their short half-lives (11C; 20 min, 13N; 10 min). We have investigated a rapid and continuous production method of these radioactive gases by using the NIRS Medical Cyclotron.

A target gas was held constant in the irradiation tube and it flowed out constantly from the tube together with produced radioactive gases, which was then purified by passing through reaction and absorption tubes, followed by analysis with a "on-line" radio-gas chromatograph. Energies of incident protons were 12 MeV and 15 MeV for the 11C and 13N production, respectively. A current of proton beams used in this study was 10 μA.

The 11CO and 11CO$_2$ production The chemical form of the 11C produced by the 14N(p, α)11C reaction was observed to be chiefly 11CO and 11CO$_2$, and they could be easily changed into either of them by passing through a CuO column at 700°C or a Zn column at 390°C for 11CO$_2$ or 11CO, respectively. Radioactive concentrations were 40 μCi/ml for 11CO$_2$ and 35 μCi/ml for 11CO at a N$_2$ flow rate of 100 ml/min. Radiochemical purity was more than 98% and radiochemical contaminants were 11CH$_4$ and 13N$_2$.

The 13N$_2$ production A mixed gas (CO$_2$: 90%, He: 10%) was used as a target. CO$_2$ was removed with NaOH from the target gas after passing through the irradiation tube, and then it contained 130 μCi of 13N$_2$ per 1 ml of He with more than 99.9% of radiochemical purity. Only 13N$_2$O was found as impurity (less than 1%) which decreased with a longer irradiation.

Production of High Purity 123I Wight 124I Contaminant

K. Suzuki, R. Iwata, K. Tamate, K. Yoshikawa, Y. Kasida

National Institute of Radiological Sciences, 4–9–1, Anagawa, Chiba, Japan

The 127I(p, 5n)123Xe(β^+, EC/2.1 hr.)123I reaction was used with 60 MeV protons to obtain high purity 123I. About 10 MeV of the proton energy is lost in the target of 1.5 g/cm2 NaI powder. A generator method in a single pass configuration similar to that of Sodd, et al., was used to separate the generated radioactive xenons from the target and a carrier He gas.

The 125I activity recovered from the liquid N$_2$ trap was about 15 mCi at ~7 hr. after the irradiation of 2.5 hr with 1 μA. Radioactive contaminants except 125I were not detected in the solution after purging with a fresh He gas, at a flow rate of 20 ml/min for 5 min and the ratio to that of 123I was 0.1% at ~7 hr, after the end of bombardment. Without this treatment, the eluate from the trap contained about 1% 125Xe and 2×10^{-4} % 127Xe in the final solution.

To obtain high purity 125I, it is essential to treat the trap with a fresh He gas or to reflux the solution.