The specific activity of these 18F-compounds was high enough to apply to clinical use. The compound (1) and (2) were synthesized as kidney scanning agent, and (3) and (4) as pancreas scanning agent, (5) as tumor affinity agent, (6) as adrenal gland scanning agent.

Fundamental Studies on Production and Quality of 201Tl

N. Ueda, S. Nakamoto, H. Matsushima and M. Hazue
Nihon Medi-Physics Co., Takarazuka

Thallium(I)-201, having good biological and physical properties as a myocardial imaging agent, is now an object of interest in nuclear medical field in Japan.

With the intention of routine production of 201Tl for medical use, we have investigated the nuclear reaction, chemical processing and testing method. Natural mercury and thallium were tried first as target material in expection of possible 201Tl producing nuclear reactions; 202Hg (p, 2n) 201Tl and 203Tl (p, 3n) 201Pb \rightarrow 201Tl. Thus the target were bombarded with proton accelerated to 26 MeV with the cyclotron of model CS-30 (Tcc). When mercury was used as target material, number of (p, xn) reactions seemed to occur to produce non-separable radionuclidic impurities such as 200Tl and there were some problems and difficulties related to target material treating and chemical processing. On the other hand, thallium target, by bombardment with 26 MeV proton, gave the intended 201Pb in a satisfactory yield and then radionuclidic and chemical purities of final product (201Tl, daughter of 201Pb) were expected to be good after chemical separation. Thus the thallium target system was examined further, using 203Tl-enriched target material. After bombardment, by solvent extraction method, 201Pb was separated from 203Tl target material which would be recovered for the next bombardment. Thallium-201, which has been born from 201Pb was re-extracted from 203Pb-201Tl mixture about 30 hrs after first separation when its radioactivity reached maximum. Separated 201Tl was purified by passing through an ion exchange column to obtain the pure monovalent 201Tl. And the final product was examined by paper chromatography in n-BuOH saturated with 1 N HCl. And it was proved to be consist of exclusively monovalent 201Tl and to contain no radiochemical impurities. No more than 2 ppm of Tl and Cu were detected by chemical test and average radionuclidic purity of recent 10 lots at calibration time was $99.76 \pm 0.03\%$ with $0.24 \pm 0.03\%$ of 202Tl.

The Production of 13N Labelled Ammonia

K. Tamate, K. Suzuki, K. Yoshikawa, R. Iwata and Y. Kasida
National Institute of Radiological Sciences, 4–9–1, Anagawa, Chiba, Japan

The nitrogen-13 labelled ammonia, which is useful for the liver function studies, has been produced using a remote control system at NIRS medical cyclotron facility.

When a sterilized water was irradiated with 10 uA protons (15 MeV) for 20 minutes, over 90% of radio-activity was determined as NO$_2^-$, NO$_3^-$ and 3% of that was the ammonia in the irradiated water with the impurities as 18F which was produced by the 18O(p, n)18F and 48V (from titanium target cell).

These 13N labelled nitrogen oxides were reduced to 13N labelled ammonia by the action of Devalda’s alloy and sodium hydroxide. Finally, the reduced 13NH$_3$ was distilled into the 5 ml of 1% NH$_4$Cl solution which is useful for the study of liver function by the administration from a large intestine. The 80 mCi/5 ml of the final product has been obtained with 99.7% of radiochemical purity. All of these procedures were operated remotely from the outside of the hot-cell using the specially designed control system.