President's Lecture

Contribution and Development of Radioisotopes to Diagnosis of Malignant Neoplasm

Miichiro Ozeki
Professor, Department of Radiology, Kurume University, School of Medicine

In 1961, I charged the assignment lecture of Japan Society of Nuclear Medicine on the subject of "Clinical application of radioisotopes, especially on malignant tumor scanning" using a creative method of Kurume system color scanning, which was first developed by myself. In this lecture, I reported the first clinical cases of brain tumor scanning in our country. Since then, I have taken an interest in malignant tumor scanning in the domain of nuclear medicine.

Radioisotopes that I first carried out as tumor scanning agents were 131I-fibrinogen, 131I-fibrin and 131I-fibrin antibody, which revealed a satisfactory results in an animal experiment. 131I-antihuman-rabbit-fibrinogen-antibody was successful in the detection of malignant tumor in clinical use. However, I could not help giving up the usage of it by way of a commercial products by reason of a difficulty of refining and hyperactivity in blood. So I, in view of easy refining, used RISA, 197Hg-, 203Hg chloride to brain tumor scanning and established the diagnosis methods. Subsequently, it was reported that 67Ga citrate was useful in the detection of malignant tumor.

While I used 67Ga citrate, I, seeking for more effective substances, studied on 197Hg-, 203Hg chloride in animal and clinical experiment, resulting that in the detection of malignant tumor, *Hg chloride could favorably compared with 67Ga citrate. (the positive rate of *HgCl$_2$ in lung cancer was 84.7%).

By assistance from Dr. Maeda and Kono who discovered that 57Co labelled Bleomycin was effective in the detection of malignant tumor, I tried labelling of short half life substances, for example 131I, 99mTc, 113mIn, to Bleomycin but the labelling arrived at unsatisfactory results.

I attended to 201Tl which developed for myocardial scan agent and tried to labelled to Bleomycin. But 201Tl chloride was not combined with Bleomycin of 1 or 3 valence. Then I investigated minutely the possibility of tumor detection of 201Tl chloride and obtained the impression that 201Tl chloride may be no way inferior to 67Ga citrate and *Hg chloride. (the positive rate of 201Tl chloride in malignant neoplasm was 84.2%). Scintigram of 201Tl chloride could be obtained from immediately after to 24 hours after injection and then was not necessary for taking interval of several days such as 67Ga citrate and *Hg chloride. So 201Tl chloride was convienent for tumor scanning.