O. Bone and Joints

The Clinical Usefulness of a 4000 Hole Di/Con Diverging Collimator
—for Bone Scintigraphy using 99mTc-Diphosphonate—

N. Huzimura, M. Matumoto, K. Katayama
Department of Radiology, Kumamoto University Medical School, Kumamoto

We have designed a 4000 hole Di/Con diverging collimator, and skeletal scintigraphy with this proved to be valuable procedure. Ten adult patients were given 2 mCi/10 kg of 99mTc-diphosphonate intravenously. Images were obtained 3 hr post injection using a Toshiba GCA-102 scintillation camera.

Using the 4000 hole Di/Con diverging collimator images of the pelvis, lumbar spine, thorax, and skull were taken. Both anterior and posterior views were performed. Next using a 1200 hole diverging collimator a posterior view of the thorax was obtained. In addition, the suspected lesion was imaged with a 4000 hole parallel collimator.

In this study, the mean study time was reduced from 60 min using the 1200 hole diverging collimator to 30 min using the 4000 hole Di/Con diverging collimator, and the images with both diverging collimators were similar. However, the distortion was remarkably with the 4000 hole Di/Con diverging collimator.

Spinous and transverse processes of individual vertebrae were clearly seen with the 4000 hole parallel collimator, but not with both diverging collimators.

We conclude that the 4000 hole Di/Con diverging collimator is useful for bone survey. If a more detailed view of suspicious area is required, a high resolution collimator should be necessary.

Clinical Uses of the Positron Camera on Bones

K. Ishii, S. Mimoto, K. Nakazawa, Y. Yoda, S. Hashimoto
Department of Radiology, Kitasato University Hospital, Sagamihara
S. Okano, T. Nozaki
Institute of Physical and Chemical Research

We wish to report the clinical uses of the Positron Camera with focused collimeter, which was devised by Okano and his associates some years ago. We attempted bone scanning of 18F by employing this camera. The Positron Camera we constructed for this attempt consisted of an image detector with Pho-γ-camera (Hp type) produced by the Nuclear Chicago Company, and a coincidence detector with...
a sodium iodide crystal 2 inches in diameter. On the side of the image detector, we built a honeycomb type collimeter which was focused on the face of the coincidence detector. Its focal distance was 100 cm. We used an AEC module produced by the ORTEC Company as the simultaneous calculator system. Two to three hours after intravenously injecting 10–8 mCi of 18F, we performed bone scanning.

Although we cannot assert that this method is superior in all respects, the image obtained was clearer than that obtained by 99mTc-phosphate due to the disappearance of background. This disappearance of background represents one of the advantages of the Positron Camera, the other advantage being the fact that both the image of coincidence and the regular image are obtainable. This Positron Camera may be employed effectively when other short half-life positron emitters are used. However, the disadvantage of this camera lies in the fact that its range is limited in scope.

An Attempt at Quantitative Representation of Bone Scintigrams

S. SASAKI, K. HAYASHI, Y. HOSONUMA and S. OHMORI

Department of Radiology, Kanagawa General Rehabilitation Center

Purpose:

In performing bone scanning at regular intervals for the purpose of evaluating the course of bone disease, all the scintigrams must be made under the same scanning conditions. This is because, on scintiphoto, the activity of bone tissue is expressed in black of different shades, which are dependent on scanning conditions.

Even if all scintigrams are taken under the same scanning conditions, any change in disease activity cannot be visualized unless the change is expressed as a difference in the shade of darkening. Moreover, the difference is recorded qualitatively only. These problems all arise from the fact that photographic records are used in the follow-up of disease course.

The authors thought it might be possible to make proper quantitative comparisons of scintigrams if such records are kept on the basis of counts input into a collimator without any previous processing.

Method:

Input from a whole-body scanner is stored in a matrix memory of a minicomputer. As necessary, the image of the area around the lesion is displayed on a cathode ray tube together with the input count, and the scanning conditions are also corrected as needed.

Results:

By this method, scanning can be performed under optimal conditions because no restrictions are imposed on them, and changes in disease condition can be evaluated quantitatively since disease activity is expressed in terms of count.