and pinhole collimators and Graphic 5 scanner were used. The images were obtained at 1, 2, 3, 4, and 6 hours after intravenous injection of 2 to 10 mCi of 99mTc-DMSA. In some cases, radioisotope angiograms were obtained after bolus injection of 99mTc-DMSA.

In all cases, clear renal images were obtained up to 6 hours after injection. When the pinhole collimator was used and each kidney was enlarged to full crystal size, the detail of renal image was seen with more resolution than using parallel collimator or Graphic scanner.

Because this radiopharmaceutical accumulates in renal cortex and renal medulla demonstrates relatively cold area, therefore, normal variation of this new renal image was different from previous renal images. Normal renal image using 99mTc-DMSA and pinhole collimator were classified into three patterns. In patients with chronic pyelonephritis, images demonstrated marked renal cortical atrophy. Renal infarction was also clearly depicted by the combination of 99mTc-DMSA and pinhole collimator.

In conclusion, renal imaging by 99mTc-DMSA combined with pinhole collimator was found to be the most useful method for renal imaging. Improved image served for the readings of normal renal structure, characteristic findings of the cases with pyelonephritis and space occupying lesions in polycystic kidney, renal infarction and etc.

A New Excellent Renal Imaging Agent: 99mTc-DMSA

T. Michigishi, T. Aburano, N. Tonami, K. Hishida

Department of Nuclear Medicine, School of Medicine, Kanazawa University

M. Matsudaira

Division of Central Radiological Service

A. Ando

School of Paramedical, Kanazawa University

Recently 99mTc-dimercaptosuccinic acid (99mTc-DMSA) has been developed for renal cortical imaging agent. Results of in vivo study in rats and the clinical evaluation of this new agent proved in kit form are presented.

The distribution of 99mTc-DMSA and 203Hg-chloromerodrin in rats was measured by serial autopsies. The rats were sacrificed at 1, 3, 6 and 24 hours after intravenous injection of these agents and the specific activities in the various organs were measured with a well-type scintillation counter. The concentration of 99mTc-DMSA was 20.3% of administered dose at 1 hour, 25.2% at 2 hours, 23.9% at 6 hours and 25.2% at 24 hours. That of 203Hg-chloromerodrin was 71.1% at 1 hour, 86.2% at 2 hours, 83.7% at 6 hours and 39.9% at 24 hours.

For clinical evaluation of this agent, 152 patients were studied. 44 patients out of them were studied with 203Hg-chloromerodrin. The 99mTc-DMSA renal images were better than those with 203Hg-chloromerodrin in all of 44 patients.

For a posterior static imaging a dose of up to 2 mCi was used depending upon the age of the patient, and a scintiphotograph was obtained at 1 or 2 hours after intravenous injection. 10 mCi of 99mTc-DMSA was injected as a bolus to study the blood flow of the abdomen, and the data were registered in VTR for 5 minutes. Serial posterior
images were obtained every 5 seconds for 10 to 40 seconds. Especially the information concerning the vascularization of the space occupying lesion was useful for differential diagnosis.

We experienced an interesting case with renal stone 203Hg-chlormerodrin scintiscan failed to demonstrate the affected kidney but 99mTc-DMSA scintiscan succeeded in visualizing it. 99mTc-DMSA was stable and free 99mTcO$_4$ was not detected after 6 hours of preparation on thin-layer chromatogram.

The estimated absorbed radiation dose from 1 mCi of 99mTc-DMSA was total body 0.014 rad, kidneys 0.582, male gonads 0.010, and female gonads 0.013 respectively.

Any side effects were not observed during our clinical use.

Our conclusion is that 99mTc-DMSA might be an excellent and safe renal imaging agent and replace 203Hg-chlormerodrin in the study of renal corticomedullary morphology.

Clinical Experiment of 99mTc-Dimercaptosuccinate for Renoscan

M. UEDA, M. MIKI, Y. OICHI, A. KIDO, T. MACHIDA

Department of Urology, Jikei University, School of Medicine, Tokyo

A clinical experiment was made on 99mTc-dimercaptosuccinate (99mTc-DMS), a new renal cortical scanning agent synthesized by Dainabot Radioisotope Laboratories, Ltd. 99mTc-DMS was administered to 70 patients, 45 males and 25 females in age ranging from 5 to 85 years.

After bolus injection of 99mTc-DMS (1–10mCi), renal scintiphotos were taken by means of Nuclear Chicago’s Pho Gamma HP scintillation camera and a data-store playback system.

Vascular images of the kidney were produced at 5–10 second intervals commencing when the aorta was first seen after 99mTc-DMS injection. Functional images were taken at 3 minutes after intravenous injection and thereafter. Renal images of patients with normal function were taken at 2 hours after injection, and those of patients with abnormal renal function and renal failure were followed for 24 hours.

Result: 99mTc-DMS RI-angiograms of patients with renal cancer, renal cyst and polycystic kidney showed no clear images. In a functional study, clear renal images of patients with normal function were obtained at 2 hours after injection. Renal images were obtained at 4 hours after intravenous injection in the case of severe acute renal failure (creatinine 11.2 mg/dl and BUN 110 mg/dl) due to obstructive uropathy.

Conclusion: In the functional phase, by using 99mTc-DMS clear images were obtained for patients with normal renal function. Also in patients with renal failure, renal images were obtained at 4 hours after injection. But in the vascular phase, images with 99mTc-DMS are less clear than those with 99mTc-DTPA.