slice, the following results were obtained. Distributions of 203Hg-chlormerodrin and 203Hg-acetate in the kidneys were very similar and these agents were localized on renal cortex, especially on medullary rays. But the deposition of 99mTc-DMSA was restricted within renal cortex except medullary rays.

Chemical and Biological Studies on 99mTc-DMSA Complex

I. Ikeda, O. Inoue and K. Kurata

Dainabot Radioisotope Laboratories, Ltd.

99mTc-dimercaptosuccinate (99mTc-CMS) complex was prepared by electrochemical, electrolysis, SnCl$_2$ and NaBH$_4$·HCl methods. In all methods, less than 0.1% of free 99mTcO$_4$ was detected in the original preparation. The electrophoretic and paperchromatographic patterns of 99mTc-DMSA was separated into two peaks. One peak was detected at nearly same spot as free DMS while the other peak remained at the origin. Kidney uptake was due principally to the 99mTc-DMS complex which remained at the origin during the separation procedure. There were significant differences in organ distributions depending upon the methods and conditions of preparation. The highest renal concentration was achieved with SnCl$_2$ method at pH=2 (60% dose/g-organ), whereas, the lowest was with electrochemical method at pH=10 (1.9 % dose/g-organ), at 3 hr. after injection into mice.

The 99mTc-DMS complex prepared by the electrochemical method at pH=10 was accumulated significantly by bone, which might be useful for bone scanning.

Clinical Evaluation of Renal Imaging by 99mTc-DMSA

Nuclear Medicine and Radiological Science, Tokyo Metropolitan Geriatric Medical Center

M. Ueda, M. Miki and T. Machida

Department of Urology, The Jikei University School of Medicine Tokyo

Y. Kawaguchi

Chief of Urology, Kosei General Hospital

203Hg-Neohydrin was commonly in use as renal imaging agent. However, 203Hg-Neohydrin has drawbacks such as high exposure dose to the patient.

99mTc-DMSA study on clinical renal imaging was performed. Sixty three cases consisted of 33 males and 30 females from 12 to 89 years old (mean 57.9 y. o. were evaluated by this new radiopharmaceutical.

Pho/Gamma HP with parallel high resolution
and pinhole collimators and Graphic 5 scanner were used. The images were obtained at 1, 2, 3, 4, and 6 hours after intravenous injection of 2 to 10 mCi of 99mTc-DMSA. In some cases, radioisotope angiograms were obtained after bolus injection of 99mTc-DMSA.

In all cases, clear renal images were obtained up to 6 hours after injection. When the pinhole collimator was used and each kidney was enlarged to full crystal size, the detail of renal image was seen with more resolution than using parallel collimator or Graphic scanner.

Because this radiopharmaceutical accumulates in renal cortex and renal medulla demonstrates relatively cold area, therefore, normal variation of this new renal image was different from previous renal images. Normal renal image using 99mTc-DMSA and pinhole collimator were classified into three patterns. In patients with chronic pyelonephritis, images demonstrated marked renal cortical atrophy. Renal infarction was also clearly depicted by the combination of 99mTc-DMSA and pinhole collimator.

In conclusion, renal imaging by 99mTc-DMSA combined with pinhole collimator was found to be the most useful method for renal imaging. Improved image served for the readings of normal renal structure, characteristic findings of the cases with pyelonephritis and space occupying lesions in polycystic kidney, renal infarction and etc.

A New Excellent Renal Imaging Agent: 99mTc-DMSA

T. Michigishi, T. Aburano, N. Tonami, K. Hishida

Department of Nuclear Medicine, School of Medicine, Kanazawa University

M. Matsudaira

Division of Central Radiological Service

A. Ando

School of Paramedicine, Kanazawa University

Recently 99mTc-dimercaptosuccinic acid (99mTc-DMSA) has been developed for renal cortical imaging agent. Results of in vivo study in rats and the clinical evaluation of this new agent proved in kit form are presented.

The distribution of 99mTc-DMSA and 203Hg-chlormerodrin in rats was measured by serial autopsies. The rats were sacrificed at 1, 3, 6 and 24 hours after intravenous injection of these agents and the specific activities in the various organs were measured with a well-type scintillation counter. The concentration of 99mTc-DMSA was 20.3% of administered dose at 1 hour, 25.2% at 2 hours, 23.9% at 6 hours and 25.2% at 24 hours. That of 203Hg-chlormerodrin was 71.1% at 1 hour, 86.2% at 2 hours, 83.7% at 6 hours and 39.9% at 24 hours.

For clinical evaluation of this agent, 152 patients were studied. 44 patients out of them were studied with 203Hg-chlormerodrin. The 99mTc-DMSA renal images were better than those with 203Hg-chlormerodrin in all of 44 patients.

For a posterior static imaging a dose of up to 2 mCi was used depending upon the age of the patient, and a scintiphoto was obtained at 1 or 2 hours after intravenous injection. 10 mCi of 99mTc-DMSA was injected as a bolus to study the blood flow of the abdomen, and the data were registered in VTR for 5 minutes. Serial posterior