Clinical Studies on Portal Perfusion Scintiscanning with 131I-Macroaggregated Albumin

S. Nakagawa and K. Araki

The Third Department of Internal Medicine, Kumamoto University, Medical School

This method was developed by Prof. Ueda and his coworkers at Tokyo University in 1965. I have evaluated this very useful and original technique by using it for the examination of portal circulatory kinetic on patients with portal hypertension and splenomegaly. We have examined 24 cases over 4 years; 7 cases of cirrhosis of the liver with splenomegaly, 14 cases of Banti’s syndrome and one case each of hemolytic anemia, malignant lymphoma and primary biliary cirrhosis with portal hypertension.

The hump of hepatoactigram was observed in almost all cases of cirrhosis, but not detected in any of the other cases. The presence of intrahepatic shunt, which was interpreted from the hump, was observed specifically in the patients with cirrhosis of the liver. We couldn’t find any difference in the lung image appearance in cases of cirrhosis and Banti’s syndrome. However, the shunt index calculated by Kitani’s equation was significantly higher in the former. There was no significant correlation between the shunt index and any of the pressures at portal system such as wedged hepatic vein pressure, portal vein pressure and intrasplenic pressure.

We recognize and would like to emphasize the clinical significance of this examination for the observation of the intrahepatic and extrahepatic shunt and its quantitative evaluation.

Dynamic Studies on the Hemodynamics by Scintiphotosplenopportoigraphy: Measurement of Regional Hepatic Blood Flow Using 133Xe

T. Kashiwagi, T. Kamada, H. Abe

First Department of Medicine, Osaka University Medical School

K. Kimura, Y. Kusumi

Department of Radiology and Nuclear Medicine, Osaka University Medical School

A new technique for estimating regional hepatic blood flow using the inert gas washout technique and scintillation camera following injection of 133Xe into the spleen was presented.

The present studies were carried out in 28 patients. On injection of 5 to 15 mCi of 133Xe in saline solution less than 2 ml, was made into the spleen. The sequential radioisotopic images were recorded on magnetic tape in a digital images of 64×64 matrices (time increment: 1 sec, total time: 120 sec) using an on-line minicomputer system. When the magnetic tape was replayed, two areas of interest corresponding to the right and left hepatic lobes were set over the digital scintiphotograph, and then washout curves over the both areas of the liver were obtained. Hepatic blood
flow in ml/100 gm/min was calculated using the following equation:

\[
\text{Hepatic blood flow} = \frac{100 \cdot k \cdot \lambda}{\rho}
\]

where \(k \) was the slope of washout curves, \(\lambda \) the hepatic to tissue blood partition coefficient (assumed to be 0.74), and \(\rho \) the specific gravity of the liver (assumed to be 1.02).

In all but one patient, right lobar flow values were equal to or greater than the left one. The right lobar flow was 86.20±12.83 ml/100 gm/min in 3 patients without liver disease, 75.12±14.54 ml/100 gm/min in 12 patients with chronic hepatitis and 51.24±17.13 ml/100 gm/min in 11 patients with liver cirrhosis. These results suggest that hepatic tissue blood flow was significantly decreased in patients with liver cirrhosis. Gamma camera images of initial xenon distribution in combination with monitor of the washout curves over the liver also provides more information on the presence of extra- and intrahepatic shunts. Therefore, this technique appears to be clinically useful in evaluation of hemodynamic phenomena associated with liver disease.

Evaluation of the Computer Processing on the Hepatic RI Examination with Using Tc-99m-Phytate

S. YOSHIDA, K. ITO

Department of Radiology, Sumitomo Bessi Hospital

S. KABATA

System Planning in HITACHI MEDICO

The purpose of this study is to evaluate the computer processing system with which hepatic accumulation ratio (KL) and spleen/liver uptake ratio using Tc-99m-Phytate are automatically evaluated. As concerned with the liver processed images, delineation of the defect are discussed.

Method

After intravenous injection of Tc-99m-Phytate a dose of 1.0 mCi, serial 64×64 matrix liver processed images are stored on a magnetic disk for 20 minutes. Region of interest are selected on the liver and hepatic accumulation curve are recorded on the hard copy unit. According to the newly planned program, the expected curve, which is fitted to the original curve within a error rate of 3% and liver accumulation rate are obtained. On the 64×64 matrix images, ROI are selected on liver and spleen. Maximum counts in the selected area of liver and spleen are compared and spleen/liver uptake rate (S/L) are calculated. Delineation of the defect on the liver processed images are discussed on the 64×64 matrix images of various total count as following 50 K, 100 K, 300 K, 500 K, 700 K, 900 K counts.

Results

The automatically evaluated KL in various liver diseases are 0.277±0.075 in chr. hepatitis, 0.225±0.072 in liver cirrhosis, 0.369±0.099 in metastatic liver tumor, 0.226 in hepatoma, 0.198 in liver cyst and 0.328±0.056 in controls.

On the other hand, spleen/liver uptake rate in various liver diseases are as followed: 18±14% in chr. hepatitis, 51±27% in liver cirrosis, 59% in hepatoma and 32±9% in metastatic liver tumor. These informations are very useful especially on the diagnosis of liver cirrhosis. The best delineation of the defect using IAEA liver phantom are obtained on the total counts of over 500 K.