Improvement of Findings on Bone Image in Prostatic Cancer Following Testosterone Potentiated 32P Therapy

Kazuo ITOH* Norihisa TONAMI* Shin KOBAYASHI*
Yutaka SUZUKI* Kinichi HISADA*

Abstract Improvement of metastatic bone lesions on 99mTc-diphosphonate bone scanning is demonstrated in a patient of prostatic cancer following the treatment of testosterone potentiated radiophosphorus.

Index terms: Prostate, prostatic cancer, metastatic Bone, bone scan, metastatic, Agents, radiophosphorus, testosterone, 99mTc-diphosphonate.

Since Subramanian and McAfee (1, 2) prepared technetium-99m polyphosphate complexes for bone imaging in nuclear medicine, many disease entities causing an increased uptake of bone seeking radiopharmaceuticals have been reported (3, 4, 5, 6). Skeletal metastatic foci in the prostatic carcinoma are sure to be abnormally accumulated by the bone seeking radiopharmaceuticals (7, 8). However, evaluation of destruction and regeneration of the involved metastatic bone lesions after 32P therapy with or without testosterone priming has been carried out mostly by the X-ray examination (9, 10, 11, 12).

Authors have experienced a case of the prostatic cancer with multiple osseous metastases which presented not only dramatic relief of generalized bone pain also improvement of the abnormal bone images with 99mTc-diphosphonate following testosterone priming 32P therapy.

Case Report

M.C. a 69-year-old man was admitted on July 10, 1974 to our nuclear medicine service for chief complaints of increased and intolerable generalized pain caused by osseous metastases of the prostatic cancer.

He first noticed a chest pain on February, 1968 and had chest X-ray examination which revealed osteoplastic metastatic lesions of the left fourth rib. A primary focus was searched and prostatic cancer was diagnosed by the transurethral biopsy of the prostate. He received orchiectomy on April, 1968 and was followed by 30 mg hexestrol diphasate daily. He was fairly free of symptoms for about five years. But he was readmitted to the urology service of the Kanazawa University Hospital on December 21, 1973 because of increased lumbar pain and dysuria. He had a transient palliation of pain and dysuria following testosterone but he ceased responding to testosterone and was bedfast with severe generalized pain until admission to our nuclear medicine service.

Anterior and posterior scintiphotoeees of a whole body with Picker Dynacamear IIC by intravenous
injection of 10 mCi of 99mTc-diphosphonate a week before the starting of 32P therapy revealed multiple disseminated abnormal accumulations over general bones, except skull and bones of upper extremities (Fig. 1). Following Edland's technique (13) 32P were given intravenously 1.5 mCi for seven days. A total dose of 32P administered amounted to 10.5 mCi. Administration of 100 mg testosterone cypionate daily were started five days prior to 32P therapy and continued for fifteen consecutive days. He had dramatic relief of pain on the third day after the initiation of 32P administration in the form of sodium phosphate. Repeat scintiphotographs performed 6 weeks after completion of 32P therapy showed reduction of uptake of the former abnormal bone lesions, with exception of three lesions, right rib, right iliac bone and right femur (Fig. 2).

The comparison of clinical laboratory findings was taken between the beginning and the end of 32P therapy. The following findings showed decreased value; acid phophatase (Bessy-Lowry unit) 3.44 to 0.33, LDH (Wroblewski unit) 623 to 424, blood urea nitrogen (mg per dl) 51 to 25, creatine (mg per dl) 1.7 to 0.8, uric acid (mg per dl) 13.5 to 9.7, W.B.C. (/mm3) 10200 to 7000, respectively. Alkaline phophatase (Bessy-Lowry unit), however, was only one of findings which showed increased value of 5.1 to 7.1. Other laboratory findings were less changed within normal.

Discussion

It is generally accepted now that the bone scan with 99mTc-tagged phosphate compounds is the
Improvement of Findings on Bone Image in Prostatic Cancer Following Testosterone

Fig. 2 ⁹⁹ᵐTc diphosphonate whole body images (anterior view (A), posterior view (B)) six weeks following the testosterone priming ³²P therapy show abnormal areas of increased uptake in the right lower rib, the right pelvic bone and the right femur. However, improvement of abnormal areas of increased accumulation seen on Fig. 1 is clearly demonstrated.

Excellent diagnostic method nicely to demonstrate the metastatic lesions at the early stage when radiographic methods still give negative results (14). However, there are only few reports, which refer to the adaptation of the bone scan with ⁹⁹ᵐTc-phosphate compounds to follow up the effect of testosterone potentiated ³²P therapy in patients with metastatic foci of the bones (15, 16).

Radiographic evaluation of metastatic bone lesions from prostate before and after ³²P therapy has been reported and regeneration of the lesions has been revealed on X-ray film in one to three months after the completion of ³²P therapy (9, 10, 11, 12). It should not be surprising, therefore, that the ⁹⁹ᵐTc-diphosphonate whole body scintiphotos obtained six weeks after the testosterone priming ³²P therapy in this patient revealed improvement of the abnormal bone image. However, we are not sure whether such changes on the bone image might be produced by sufficient cancerocidal radiation dose given to metastatic lesions of the bone. It has been reported that ³²P administered was more accumulated around the metastatic bone lesion than neoplastic tissue itself (12).

It has been found that the accumulation mechanism of ⁹⁹ᵐTc-phosphate compounds to the meta-
static bone foci is due to the hyperemia around the lesion of the bone (17) and the increased activity of the osteoblast. We are unable at present to explain exactly the mechanism of the relief of the bone pain following testosterone priming 32P therapy. It can be presumed, however, that the relief of pain is so prompt that it may be due to amelioration of hyperemia around the metastatic foci of the bones and improvement of the abnormal bone images may be also associated with such a factor.

References
要約

男性ホルモン併用 ³²P 治療に骨イメージの改善を認めた
前立腺癌多発性骨転移の一症例

伊藤 和夫* 利波 紀久* 小林 真*
鈴木 豊** 久田 欣一*

*金沢大学医学部核医学講座（主任教授，久田欣一）
**現在東海大学医学部放射線科
（別刷請求先：石川県金沢市宝町 13-1（〒920））

多発性骨転移の為に耐えがたい治療抵抗性骨疼痛を有する前立腺癌患者に対し，疼痛緩和及び骨転移巣の改善を目的として男性ホルモン（テストステロン）導入による ³²P 治療を施行した。使用後，約 3 ～ 4 日目に劇的な骨疼痛の改善を認め，さらに約 1 ケ月後の骨イメージにも改善が認められた。これまで，骨スキャンが骨転移の早期発見に非常に有効であるとされているが，本症例の如く骨転移巣の治療効果の判定にも役に立つ可能性が考えられ，興味ある症例と思われたので報告した。尚，³²P 治療によると思われる重篤な副作用は認めなかった。