was analysed in duplicate to check reproducibility, the variation coefficient was low, and the method was thought applicable to the clinical determination.

Changes of vitamin B$_{12}$ in blood by dilution of serum and recovery rates of vitamin B$_{12}$ were studied. Using normal serum treated with heat at the vitamin B$_{12}$ concentration of either 300 or 500 pg/ml, a standard vitamin B$_{12}$ solution (800 pg/ml) was diluted 2, 5, 10, 20, 40 or 100 times, and their recovery rates were obtained by comparing the theoretical values and the values actually determined. Though there was not too much difference between a theoretical value and actually determined one, the difference ranged from 7.7 to 11.2%, some increasing and decreasing.

After injecting 100 mg of tetrahydrofolate (FAH$_4$) intramuscularly to normal subjects and patients with megaloblastic anemia, aplastic anemia, nephrosis and Banti's syndrome, changes of vitamin B$_{12}$ in blood were studied.

In patients with aplastic anemia, nephrosis and Banti's syndrome, significantly low values were obtained 2 to 4 hours after injection.

Though this method has to be studied further in some aspects, it is simple and many samples can be analysed in relatively short time. For this reason it is considered that the method would be widely applicable.

Mean Red Cell Life Span of Normal Japanese

H. SAITO

Radioisotope Laboratory, Nagoya University, School of Medicine, Nagoya

Mean red cell life span (MRCLS) was determined with DF32P in normal Japanese. An average MRCLS was 85±17 days in 6 normal females, it was 104±17 days in 8 males, it was 84±18 days in 5 young females, and 97±20 days in 5 young females in the age between 19 and 22 years.

These values are apparently shorter than the generally accepted normal value; 120 days.

Since iron absorption rate was increased as observed in our previous study, and since MRCLS was shortened as observed in this study, the existence of latent iron deficiency anemia is suspected in young Japanese. The shorter MRCLS in normal young female than in normal young male would suggest the effect of hemolysis due to iron deficiency and menstrual blood loss.