Measurement of Pancreatic Blood Flow with 133Xe Clearance Method in Dogs

T. SUZUKI, M. IMAMURA, H. OHARA, T. MANABE, A. NAKASE and I. HONJO

First Department of Surgery, Kyoto University Medical School, Kyoto

A new technique to measure the pancreatic blood flow with 133Xe clearance method was reported. Using the adult dogs, a thin catheter was inserted to the branch of the pancreaticoduodenal artery, into which 300 μCi of 133Xe solution was delivered. The wash-out curve obtained from the uncinate portion of the pancreas consisted of two components, T_1 of which was 22 ± 3.3 seconds and 237 ± 106 seconds, respectively. Partition coefficient between blood and pancreas tissue (λ) measured by our Conn’s modified method was 0.62 ± 0.05. Consequently, the pancreas blood flow estimated by the first component of the clearance curve was 117.2 ml/100 tissue-min. In order to evaluate these results, radioactive microsphere method using 85Sr microspheres was applied. By means of the latter technique, estimated blood flow in the same portion of the pancreas was 96.2 ml/100 tissue min., which appeared to be fairly correspondent to the results determined by 133Xe clearance method.

As is well known, exogenously administered secretin gives rise to increase in the pancreatic blood flow. Both 0.5 and 3.0 units per kilogram of body weight of secretin was respectively administered in the dogs with normal pancreas and 60% pancreatectomy. In the latter, the pancreatic blood flow after secretin stimulation showed remarkable increase in comparison with that in the untreated pancreas. Secretory rate of the pancreatic juice following administration of each dose of secretin was also much enhanced in the 60% pancreatectomized dogs. These data suggest the facts that there is the close relationship between exocrine function and blood flow not only in the normal pancreas but in the remnant pancreas after pancreatectomy.

Determinations of Peripheral Blood Flow of Legs in Patients with Diabetes Mellitus by 133Xe Clearance.

M. INADA, Y. KAZAMA, S. KURATA, Y. ISHI and K. TORIZUKA

Endocrine Section, Department of Internal Medicine, Tenri Hospital, Tenri, and Department of Radiology, Kyoto University School of Medicine, Kyoto

133Xe saline solution was injected rapidly into femoral artery in normal subjects and in patients with diabetes mellitus. 133Xe clearance curves were recorded by scintillation counter placed on toes of these subjects. The curves were plotted semilogarithmically and were resolved by the peeling procedure into three components. The mean blood flow (MBF, ml/100g/min.) in toes was calculated as follows: $\text{MBF} = 100 \times \lambda \times \text{Km}$, where λ is the tissue blood partition coefficient and Km is the mean fractional disappearance rate of 133Xe. Furthermore, in some subjects studied in
the present paper \(^{99m}\text{Tc}\) labeled albumin was injected rapidly into femoral artery. The changes of \(^{99m}\text{Tc}\) activity in the foot were recorded by scintillation counter. The mean transit time (MMT, sec.) of the dilution curve through the capillary bed of toes was obtained by mean of curve fitting with the analog computer.

Significant inverse relation was found between MBF and MTT \((r = -0.79, p < 0.01)\), suggesting the adequacy of MBF determined by the present study.

MBF in toes average \(11.0 \pm 7.9\) ml/100g/min. in all diabetic patients and were significantly lower than those of normal subjects, averaging \(22.1 \pm 5.4\) ml/100g/min. \((p < 0.05)\). Moreover, all the patients with complication had diminished MBF in toes, and MBF was reduced in about half of the patients without complication. Thus, MBF in toes was useful indicator of the disturbance of peripheral blood flow of legs in patients with diabetes mellitus.

Application of Random Walk Equation for Flow Model

T. Mukai

The Central Clinical RI Division, Kyoto University School of Medicine, Kyoto

Y. Ishii and K. Torizuka

The Department of Radiology, Kyoto University School of Medicine, Kyoto

An attempt to applicate the Random Walk Equation for radioisotope dilution process through the system composing vascular net has been made. This equation is characterized by two parameters, mean transit time (MTT) and randomizing constant (K). The latter is thought to represent the anatomical arrangement of vascular space. Upon examining the input output curves monitored over heart and head, the K of cerebral vascular bed was appeared to be irrespective with the changes of cardiac output (CO), while MTT was liable to increase with the increase of CO. The recorded curve was fitted to choose the optimal parameters iteratively using least square method.

An attempt to fit monitored curve without the information of input curve was done by using so called simplex method where arbitrary combination of four parameters should have been shoosed if a boundary condition was set. This method might merit to analyze usual external monitoring curve over various organs in future.