Diagnostic Value of 99mTc-BLM in the Detection of Oral Malignant Tumor

K. KUNIKATA and Y. ISHII

Department of Stomatology

T. MORI and K. HAMAMOTO

Central Clinical RI Division

Kyoto University, School of Medicine, Kyoto

The purpose of the present study is to investigate the tumor specific accumulation of 99mTc-BLM in the oral region, comparing it with that of 67Ga-citrate, and to evaluate the diagnostic value of 99mTc-BLM in the detection of oral malignancies.

The cases include 21 squamous cell carcinoma, 1 adenocarcinoma, 1 Hodgkin’s disease, 1 reticulum cell sarcoma, 1 angiosarcoma, 1 mixed tumor, 1 squamous cell hyperplasia, 1 fibrous dysplasia, and 9 inflammatory lesions.

Positive accumulation has been observed in 19 out of 22 cases of oral cancer and 3 cases were negative. There was no remarkable difference in the rate of positive deposit between 99mTc-BLM and 67Ga-citrate. However, in 4 cases with maxillary carcinoma examined immediately after therapy, positive results have been obtained. This findings shows that 99mTc-BLM may be also accumulated into the tissues injured by the treatment. Therefore, 99mTc-BLM scanning seems less valuable for the evaluation of the effect of treatment than 67Ga-citrate.

The other malignant tumors, Hodgkin’s disease, reticulum cell sarcoma, and angiosarcoma, showed remarkably positive delineation in the 67Ga-citrate scintigram, but in the 99mTc-BLM, Hodgkin’s disease was negative and the others were slightly positive.

A benign mixed tumor on the palate was false positive in the 67Ga-citrate, and negative in the 99mTc-BLM. Conversely a squamous cell hyperplasia was false positive in the 99mTc-BLM. A fibrous dysplasia was false positive in both scintigrams.

Inflammatory lesions were 5 maxillary sinusitis, 3 submandibular sialoadenitis and 1 submandibular lymphadenitis. Some of these inflammations revealed false positive results in both scintigrams.

From these results, 99mTc-BLM as well as 67Ga-citrate can be considered useful for the detection of oral malignant tumors, but 67Ga-citrate is more effective especially for tumors such as Hodgkin’s disease, reticulum cell sarcoma and angiosarcoma. At the same time, it is necessary to pay attention to the false positive accumulation in the cases of squamous cell hyperplasia, fibrous dysplasia and inflammatory changes.