revealed abnormal RI defect. Fifteen lesions (79.0%) were detected by X-p and thirteen (68.4 %) by both X-p and RI imaging. To compare X-p with RI imaging in detecting these lesions, 8 (42.1 %) were equally detected by each methods and in 8 (42.1 %) RI imaging exceeded X-p and in 3 (15.8 %) X-p exceeded RI imaging. 169Yb-citrate imaging seemed to detect more accurately osteolytic changes than osteoplastic changes, and in a case of almost complete osteolytic change, it revealed the lesion as RI defect. After radiation therapy, RI accumulation decreased.

Because of its little accumulation on liver and no disturbance by activity in urinary tract like 87Sr, 99mTc-pyrophosphate and 99mTc-polyporphosphate, 169Yb-citrate is suitable for imaging in lumbar vertebral and pelvic region. Unfortunately, it highly accumulates in salivary glands and nasal cavity, it is difficult to image the lesion of head and neck region.

From our experience, it must be remembered that some cases will reveal the lesion as RI defect and that sternum and thoracic vertebra confuses in frontal view, then lateral view sometimes reveals useful.

169Yb is non-beta emitter and has suitable gamma-ray energy for imaging, and has a long shelf life (physical half life; 32 days).

From a standpoint of radiation dose to skeletal system, large dose cannot be administered but selection of cases makes the nuclide to be relatively low-cost and useful bone seeking agent.

The Clinical Evaluation of 18F Imaging for Neoplastic Skeletal Diseases

—A comparative study with 87Sr and 99mTc phosphorous compounds—

M. KAWANA

Department of Radiology, Chiba University Hospital, Chiba

The purpose of this study is to evaluate the usefulness of 18F as a bone tumor scanning agent. Routine bone scanning has been carried out with 99mTc phosphorous compounds and conventional rectilinear scanner now in our department. Comparative studies between 18F and 87Sr and 99mTc phosphorous compounds were performed in thirty seven cases, including thirteen cases of primary skeletal neoplasms, twenty one cases of metastatic skeletal neoplasmes and three cases of skeletal inflammations.

In case of 87Sr scans it takes longer time for radioactivity to clear from the blood and soft tissues compared with 18F cases. So in general, the body background activity is much higher in 87Sr scan.

In all cases, scan were positive both with 18F and 87Sr and 99mTc. In conclusion we feel that 18F scanning appears to be a very sensitive indicator in detecting bone tumor.