Renal Blood Flow Study with Xenon-133 Washout Method in Hydronephrosis

Department of Radiology, Osaka City University Medical School
T. Kishimoto and M. Maegawa
Department of Urology, Osaka City University Medical School
T. Tsuchida and T. Oka
Shirokita Hospital, Osaka

In 30 patients with urogenital diseases, the intrarenal distribution of blood flow was determined by Xe-133 washout method. Nine of the subjects had unilateral or bilateral hydronephrosis, secondary to ureteral obstruction as proved by the IVP. (Ureteral calculus, P-U stenosis, and ureteral stricture). In each of these cases, we performed Xe-133 washout method and compared it with renogram, IVP, angiogram and some other tests.

In seven subjects with normally functioning kidney, the cortical renal blood flow was 73.4% ± 2.8 (SE) of total renal blood flow. Blood flows of the juxtamedullary and the inner medullary region were 18.5% ± 2.0 (SE) and 7.9% ± 1.4 (SE), respectively. Nine subjects with hydronephrosis showed a significant decrease in both the flow rate and percentage distribution of flow into the cortical region (P<0.01), contrary to a significant increase in percentage distribution of flow into the juxtamedullary and inner medullary region (P<0.01). The degree of reduction of cortical renal blood flow correlates with the degree of hydronephrosis as assessed by IVP.

Comparison between pre-operative and post-operative condition was done in three cases. (P-U stenosis→plasty, L-ureteral calculus→lithotomy, L-ureteral stricture→plasty). After the operation, the cortical blood flow increased from 36.4% (mean) to 52.7% (mean).

This is a useful method to assess the renal function more quantitatively than renogram, IVP, and angiogram.

Simultaneous Tracing of 197-Hg-Chlormerodrin Uptake Curve and 131-I-Hippuran Renogram with Double Isotope Technique

T. Sakurai and T. Sonoda

Department of Urology
K. Kimura and F. Kaziya
First Department of Internal Medicine
K. Kusumi and T. Hosomi
Department of Radiology
Osaka University Medical School, Osaka

With a double isotope technique, simultaneous tracing of 197Hg-chlormerodrin uptake curve and 131I-hippuran renogram, and consequent renal scintiscanning are routinely carried out. This procedure not only saved the time required for each tracing, but explored the problems in
quantitative evaluation of renograms in patients with urinary tract abnormalities.
Since the rate of 131I counts in the 197Hg window was experimentally confirmed under 10 per cent when the dose of 197Hg was used over five times larger than of 131I, the ratio of 197Hg to 131I was kept to 5 to 1.
1) The changes of urine flow from the pelvis to the bladder caused by acute ureteral obstruction, voiding in the presence of vesicoureteral reflux, and bladder filling, altered the hippuran renogram pattern. The alterations were characterized by delay in excretory phase, sudden elevation of slow down curve, and prolongation of renal transit time. However, the chlormerodrin uptake curves were not affected by these urine flow changes.
2) Bladder emptying by catheterization in patients with large amount of residual urine produced the renogram pattern of shortened transit time, and revealed that T1/2 value of slow component of the blood disappearance curves was also decreased. However, the changes of chlormerodrin uptake curves and its blood disappearance curves after bladder emptying were negligible.
The problems in computer assessment of 131I-hippuran renograms in patients with urinary tract abnormalities were investigated, and the advantage of simultaneous tracing of 197Hg-chlormerodrin were emphasized.

Measurement of GFR, Dialysance and RPF Using a Single Injection of 51Cr-EDTA and 125I-Hippuran
Third Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka

Two substances, 51Cr-EDTA and 125I-Hippuran (125I-OIH) were chosen for the determination of GFR and effective RPF. Following a single injection of the two substances (1 μCi/kg of 51Cr-EDTA and 0.4 μCi/kg of 125I-OIH), blood samples were drawn 20, 40, 60, 90, 120 and 150 minutes later, and clearances were calculated by the slope-intercept method.
1) The slope-intercept single compartment analysis was compared with that of the two-compartment model. 51Cr-EDTA clearances showed small difference (3.2 ± 2.1%) and this was thought insignificant in practice, but 125I-OIH clearances demonstrated slightly larger difference of 6.1 ± 5.9%. Accordingly one-compartment model was used for 51Cr-EDTA clearance and two-compartment analysis for the calculation of 125I-OIH clearance.
2) The slope intercept method of 51Cr-EDTA was compared with the UV/P method. Correlation coefficient between these two methods was 0.97. This was thought to permit the above calculation valid.
3) Clearances of these substances by the slope-intercept method were compared with $C_{\text{creatinine}}$ and C_{PAH}. The correlation coefficient between $C_{\text{Cr-51-EDTA}}$ and $C_{\text{creatinine}}$ was 0.96 and that between $C_{125-\text{OIH}}$ and C_{PAH} was 0.75.
4) 51Cr-EDTA clearance during the hemodialysis was also measured by the slope-intercept method and was compared with actual dialysis. These showed good agreement.
These results was thought to indicate the measurement of GFR, dialysance and RPF with slope method with venous sampling to be used as a routine clinical procedure.