Tumor scanning with 57Co- Bleomycin

T. MAEDA
Kyushu National Cancer Center Hospital, Fukuoka
A. KONO and M. KOJIMA
Faculty of Pharmaceutical Science, Kyushu University, Fukuoka

Bleomycin-57Co (BLM-57Co) was concentrated in the Ehrlich solid tumor in the mice. Twenty-four hours after the injection, high radioactivity was found in the tumor tissues as well as in the liver and kidney.

One hour after the injection, BLM-57Co was detected in the tumor tissue homogenate and in the urine by thin layer chromatography. All the radioactivity in the urine was attributable to BLM-57Co. These indicate that BLM-57Co is fairly stable in a mammalian body.

We also prepared BLM-67Ga and compared with BLM-57Co or 67Ga-citrate. The distribution patterns of BLM-67Ga were almost the same as those of Ga-citrate in mice. BLM-67Ga was unstable in a mammalian body. In these three compounds, BLM-57Co was concluded to be the best tumor localizing agent.

When BLM-57Co or BLM-14C-Co was used, the radioactivity ratio of nuclear to subcellular fraction in the tumor tissue homogenate was about 7:3; the same as the total DNA ratio of each fraction.

On the contrary, in case of BLM-14C the ratio was 3:7. This suggests that the DNA binding nature of BLM is altered by the chelation with Co (II). DNA of the tumor was purified. 30–40% of the radioactivity were lost in the course of the purification of BLM-57Co bound as well as BLM-14C-Co bound DNA. Dialysis and gelfiltration of the purified DNA showed that BLM binds firmly to DNA, and the isolation of cobaltous ion from the DNA-BLM-Co was 10–20%.

Clinical study on the use of 57Co-Bleomycin for the diagnosis of malignant tumor.

The preparation of 57Co-BLM was as follows: Solution of carrier free 57CoCl$_2$ was added to aqueous solution of Bleomycin, and the PH of this mixture was adjusted to PH 6–7, 320–500 uCi (Bleomycin: 5 mg) was administered to the patient intravenously. Six hours and 24 hours after administration, scintigraphy was taken with scintcamera and scintiscanner ($5^\circ \phi \times 2^\circ$).

57Co-Bleomycin was administered to 22 patients with tumors which was diagnosed as malignant clinically. Similarly 57Co-Bleomycin was administered to 2 patients in whom the presence of malignant tumor was suspected but subsequently were found to have other disorders operatively (One patients was aneurysma of pulmonary artery, and other was pneumonia). Twenty lesions in the 30 lesions of 22 patients were recognized as positive images in scintographies obviously.

A female, 20-year-old, was admitted with a radiographically confirmed diagnosis of gastric cancer, vertebra metastasis and pulmonary lymphangitic metastasis. The scintigram with 57Co-Bleomycin showed the lesion of vertebra, patchy pattern of lung lesions and further the iliac bone lesion, while the X-ray film at the same time was not showed the iliac bone metastasis. Subsequently the iliac bone metastasis was recognized on the X-ray film 2.5 months after the scintigraphycal examination. This case emphasizes the diagnostic significance of tumor scanning with 57Co-Bleomycin.

On the other hand, the non-malignant lesions of 2 patients was not recognized scintigraphycally. The excretion ratio of 57Co in the urine was about 85% in 24 hours after i.v. injection. Absorbed doses of total body and kidney were estimated about 20 mrad and 2 rads per 1 mCi of 57Co-Bleomycin.