appeared to be the most suitable from the point of short developing time, proper RF value and good separating power. In rats urine one artificial radio peak other than 169Yb-DTPA was detected on thin layer chromatogram with this solvent.

Whole body retention of 169Yb-DTPA in female albino rats was studied for 41 days. The excretion showed biphasic pattern and about 95% of the dose was excreted in the first 42 hours. While the residue (5%) was excreted very slowly and about 2% of dose still remained even on 30th day.

The distribution of 169Yb-DTPA was recognized mainly in the bone, liver and lung by autoradiogram of mice.

In man, 80-90% of the intravenously administered 169Yb-DTPA was excreted in the urine for the first 2 hours. In the following 48 hours, hardly any RI activity was detected in the urine.

The renal scintigrams were obtained by administrating 169Yb-DTPA, but the visualization was different from that of 198Hg or 203Hg chloromerodrin.

In 23 patients, the GFR of 169Yb-DTPA (0.4-0.5 μCi/kg) was compared simultaneously with GFR of sodium thiosulfate (80 ml). Prior to the examination, all patients were given 200-300 ml water.

The activity of 169Yb-DTPA in 1 ml of serum and 1 ml of urine was measured by means of a well-type scintillation counter (77-177-photon energy range).

The clearance was calculated on the base of formular $c=uv/p$. The relative coefficient of 169Yb-DTPA sodium thiosulfate (in the terms of clearance) was calculated at 0.98.

Simplified Single Injection Clearance in Children

T. Sakai

Kidney Center, Kitasato University School of Medicine, Sagamihara

K. Ito, K. Seo and T. Adachi

Department of Pediatrics, Jikei University School of Medicine, Tokyo

ABSTRACT. The renal clearance of sodium 131I-iothalamate after a single intravenous dose of 10 to 25 μCi was calculated from the plasma disappearance curve. The endogenous creatinine clearance was compared with these results.

Twenty nine cases of all levels of renal function were studied. The correlation between both methods was good. In five patients, the clearance was obtained by external counting and agreed well with the clearance calculated from the plasma samples. The simplified single injection clearance was calculated on the basis of the one-compartment model proposed by H. Smith, in 20 pediatric patients with all levels of renal function. The correlation between two-compartment system and one-compartment system methods was fairly good. (correlation coefficient, $r=0.6$) The single injection clearance of sodium 131I-iothalamate, calculated on the basis of the two-compartment model is accurate in younger children, where a complete urine collection is difficult to obtain. It is also helpful in outpatients because of its short duration. The number of plasma samples required can be reduced to one by the use of an external counter.