Hepatic Function Test with 131I (Monoiodide) BSP

M. Iio, H. Yamada, K. Chiba and H. Kameda

Second Department of Medicine, University of Tokyo, Tokyo

M. Uchi and M. Ishiwa

Department of Medicine, Kofu Municipal Hospital, Kofu

131I labeled monoiodide BSP was prepared. Its structure was confirmed by nuclear magnetic resonance determinations and by elementary analysis. For comparison, 131I-diodinated BSP, 131I-rose bengal, 35S-BSP and BSP were used. 131I monoiodide BSP showed slower blood clearance than 35S-BSP and BSP. However, the monoiodide was cleared and excreted from the blood through the liver into the bile more rapidly than 131I-diodinated BSP and 131I-RB except in the case with Dubin Johnson syndrome. BSP was found useful in sequential scanning for the differential diagnosis of medical, surgical and constitutional hyperbilirubinemia and in simplified retention testing. The latter is performed by injecting 0.5 mg of 131I-BSP in volume of 0.5 ml equivalent to 50–100 µCi intravenously. Thirty minutes later 2–3 ml of blood was drawn from antecubital vein of other side for the determination of 30 min retention of 131I-BSP.

Hundred fifty three cases were studied. Normal control value is $2.46 \pm 0.66\%$ with upper range of 4%. Cases with hepatitis, liver cirrhosis, obstructive jaundice and malignancy showed reasonal increased retention of the dye. The correlation with conventional BSP 45 minutes retention test is good ($\gamma=0.782$).

The advantages of this dye are 1. BSP is a dye well evaluated in the last several decades, 2. because of its radioactive label the retention test is easily performed with tracer dose loading, even in cases with jaundice.

Statistics at the Central Clinical Pathology Lab. indicated the marked decrease in the number of the conventional BSP test because of its side effects. 131I-BSP retention test is expected to replace the conventional BSP retention test.

A Simpler Method by Using 131I-BSP in Liver Function Test

Metabolism of 131I-BSP

T. Tsuchida and T. Oka

Osaka Shirokita Hospital, Osaka

H. Ochi, H. Mitsuda and K. Hamada

Osaka City University Hospital, Osaka

Purpose:

To find a simpler method of liver function test, we tried to check the decreasing rate and resting rate of 131I-BSP in the blood by using the external counting method and by sampling counting method with well type scintillation counter.

Method:

1 µCi/Kg of 131I-BSP was injected i.v. and the decreasing curve (Y) was recorded by...
the external counting method for 15-20 minutes. During that time blood was drawn out at 5, 10, and 15 minute intervals after injection and that blood sample was counted on the well-type scintillation counter.

The figures were plotted on a semilogarithm graph taking Y on spindle as c.p.m. and time (min.) on transverse. These were analyzed in 2 components as a sudden drop (B) at the beginning and a gradual decrease (A) after 5-10 minute period. Then, we elongated the former slope (B) and the value t = 0 and named it (B₀) and elongated the latter slope (A) and named it (A₀). Using this graph, the following index was concluded: The half time of slope A = T₁/₂, decreasing index of the blood K = 0.693/T₁/₂; resting rate R% = S/A₀ × 100 or S/A₀ + B₀ × 100.

We used three methods in calculating this index:

1. From curve Y we calculated A₀, B₀, T₁/₂. Sn was calculated by taking the relative equivalent count at X time and naming it R%.
2. Count was taken from each blood samples.
3. A combined method of (1) and (2) above.

Result:

Taking the mean value of ten normal persons, using Method 1, the T₁/₂ was 1.08 ± 0.11 min. of curve (B) and 10.2 ± 1.8 min. of curve (A). K = 0.069 ± 0.012, R = S15/A × 100 = 33.7 ± 7.6%, S15/A + B × 100 = 24.6 ± 5.4%.

Using Method 2, T₁/₂ was 5.7 ± 1.2 min. (curve B), K = 0.126 ± 0.021, S15/A × 100 = 18.0 ± 6.0%.

In cases of patients suffering from liver dysfunction, T₁/₂ was extended; K decreased and R% increased.

Conclusion:

Comparing the three methods used, we found in Method 1, the curve had to be written explicitly. In Method 2, blood samples had to be drawn out three times and moreover skill is required to do this. In Method 3, curve A which was obtained by Method 1 made it possible to eliminate the procedure of drawing out blood. Assuming that from curve Y, Slope B signifies the diffusion of ¹³¹-I-BSP in the body and Slope A signifies the liver uptake of ¹³¹-I-BSP, it was better to use A₀ at 0 time density rather than A₀ + B₀.

For comparison purpose, we utilized ICG and found the results to be similar to that method where ¹³¹-I-BSP was used.

Metabolism of ¹³¹-I-BSP

Second Department of Medicine, Kurume University School of Medicine, Kurume

M. Takamatsu

Radioisotope Laboratory, Kurume University School of Medicine, Kurume

¹³¹-I-BSP was used in combination with BSP in rats as well as in humans. It was found that ¹³¹-I-BSP given i.v. to rats was excreted in bile quickly and almost totally. Alumina column chromatography of bile disclosed ¹³¹-I-BSP was conjugated as was BSP, but to a much smaller extent. Pretreatment of rats increased the conjugation significantly. It was also found that at least three conjugate forms appeared with BSP and there were corresponding forms of ¹³¹-I-BSP, and that the speed of elution was slightly faster in the latter.

When used with BSP in constitutional hyperbilirubinemia, it was found that the late rise of BSP in plasma in Dubin-Johnson Syndrome consisted mostly of conjugated