ed rats. In normal rats, however, hepatic uptake was not influenced by splenectomy. The uptake of colloid by the spleen and bone marrow was slightly decreased in the group in which colloid was slowly infused into the mesenteric vein compared with that after injection into the penile vein.

After partial hepatectomy, the uptake of colloid by the spleen and bone marrow was not altered, but the hepatic uptake per gram increased two fold. This finding suggests that the spleen and bone marrow have a limited capacity for colloid uptake in the normal state.

In the rats with advanced liver injury, colloid clearance rate was delayed with decreased hepatic uptake, while the spleen and bone marrow were found to have increased capacity to take up the colloid. Between the two groups in which the colloid was infused into the mesenteric vein or into the peripheral vein, no difference was noted in the uptake by the spleen and bone that collateral circulation was present in these CCl4 treated rats. In these rats, splenic colloid uptake per gram was significantly elevated.

These studies might suggest that, in liver cirrhosis splenic visualization in liver scan is due to an increased capacity of the spleen to clear intravascular colloids.

Increased Splenic Blood Flow of Idiopathic Portal Hypertension (IPH) Measured by Kr-85 Clearance Method

H. UEDA, M. NAGATANI, K. KITANI, K. CHIBA, T. TAKEDA, T. MIGITA, M. ITÓ and H. KAMEDA

The Second Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Tokyo

By means of radioactive inert gas, Kr-85, measurement of splenic blood flow was carried out on the 7 cases with idiopathic portal hypertension (I.P.H.), 6 liver cirrhosis, 2 splenomegalic liver cirrhosis, 2 Wilson’s disease and control subjects.

Splenic blood flow, expressed as ml per minutes per 100g was determined by a Kr-85 clearance technique after introduction of Kr-85 saline solution through the selective catheterization of splenic artery. Total splenic blood flow was calculated by multiplying splenic blood flow per unit weight by the splenic weight measured after operation or estimated by the splenic scintigram.

The mean splenic blood flow per ml per 100g of tissue was 118.66±29.1 ml/min in control, 115.7 ml/min in IPH, 146.5 ml/min in Wilson’s disease, 106.5 ml/min in splenomegalic liver cirrhosis and 65.4 ml/min in liver cirrhosis.

The mean total splenic blood flow was 515.8 ml/min in IPH, 1013 ml/min in Wilson’s disease, 604 ml/min in splenomegalic liver cirrhosis and 157 ml/min in liver cirrhosis. The estimated total splenic blood flow in normal cases was 143.3±34.4 ml/min.

Both splenic blood flow per 100g and total splenic blood flow were increased in IPH, splenomegalic liver cirrhosis and Wilson’s disease as compared with liver cirrhosis. But the splenic blood flow per 100g of tissue in IPH, Wilson’s disease and splenomegalic liver cirrhosis was about the same as controls.

On this report, authors emphasized that increased splenic blood flow seemed to play an important role in the etiology of splenomegaly and portal hypertension of IPH, splenomegalic liver cirrhosis and Wilson’s disease.