The Diagnostic Apply of 203Hg-Mercurochrom
(Preliminary Report)

E. FUKAKUSA, and H. FUTONAKA
The Japan Red Cross Central Hospital

H. TAKINO and K. KURATA
Dinabott RI Institute

It is the purpose of this study to know the difference in the normal, injured and inflamed tissues (especially mucous membrane) by employing 203Hg-mercurochrom. It was found that decreasing time-ratio of the employed isotope could be showed by exponential curve in pharynx mucous membranes. The effective half-time was within 50 minutes and 60 minutes respectively in normal and inflamed cases, and more over time in irradiated cases.

As above mentioned the marked difference was found in the effective half-time between normal, inflamed and irradiated tissues.

Cavity Scanning
— Clinical application of 113mIn-compound and its advantage —

T. HIRAKI, K. HISADA and T. MISHIMA
Department of Radiology, School of Medicine, Kanazawa University, Kanazawa

Cavity scanning makes it possible to delineate the size of some human cavity and relation of the surrounding organ and the cavity, as well as heart ventricle, arachnoidal space or bronchial space. In the clinical application of the cavity scanning, there are three categories as follows.

1) Static cavity scanning:
 Cerebral ventricle scanning
 Pleural space scanning
 Abdominal space scanning

2) Hemodynamic cavity scanning:
 Heart blood pool scanning
 Blood vessel scanning

3) Aerodynamic cavity scanning:
 Tracheal space scanning
 Bronchial space scanning

As the most convenient and no toxic radiopharmaceutical agent for the cavity scanning in clinical use, 113mIn Fe ascorbic acid is extremely useful because that 113mIn is a short-lived nuclide (1.7 hrs half-life) emitting 390 KeV monoenergetic gamma rays (no beta emission). The other agents used are 198Au colloid or 131I-HSA for detecting the size of the cavity in advance before the intracavitial irradiation therapy.

The static cavity scans were successfully obtained in the cases with hydrocephalus, pleural effusion with gastric carcinoma and 2 cases with subarachnoidal compression of the spinal cord either by metastasis of the gastric carcinoma or reticulum cell sarcoma.

The results of the hemodynamic cavity scannings were satisfactory in cases with pericardial effusion due to pericarditis and buccal hemangioma.

In case with lung cysts causing chronic bronchitis, the aerodynamic cavity scanning was useful to demonstrate the functional RI pattern of bronchus and bronchiole.