Some Considerations on Infusion Therapy of the Tumor of the Head and Neck
Using 131I or 203Hg Labelled Compounds

A. Akanuma and H. Yasukochi

Department of Radiology

Y. Sato, M. Morita and H. Takahashi

Department of Otorhinolaryngology, Faculty of Medicine,
University of Tokyo, Tokyo

Some method of infusion therapy on cancer of the head and neck were investigated using radioisotopes.

1. Catheter localization
The catheter was placed in a. carotis externa via a. temporalis superficialis retrograde. The tip of the catheter was situated at the junction of nourishing artery of tumor in a. carotis externa, then anticancer drug was infused through the catheter into the region of tumor directly.

Before that, to ascertain whether the tip is situated satisfactorily or not, dyes or contrast media were infused during intubation operation. For the same purpose it was reinvestigated using scintigraphic method after infusion of 131I-MAA before the infusion of anticancer drugs. In one of these investigation, in spite of affirmation of the position of the tip during operation, 131I-MAA distributed in unexpected region. In the case of dye, various conditions just as infusion pressure come into the problem, therefore this postoperative radioisotope technique is valuable to determine the position of the tip appropriately.

2. The duration time of infusion.
Using a four channel scintillation rate-meter, the change of radioactivities on the parts of tumor, heart, femoral artery and infusion pump were recorded during infusion of radioisotope labelled compounds. According these investigations, the following conclusions were considered:

$$C_{(t)} = \frac{D}{\lambda TW} (1-e^{-t}) e^{-t/\lambda} + \frac{D}{\lambda' TW} (1-e^{-t'})$$

\[\because t \leq T \]
$$\frac{D}{\lambda' TW} (1-e^{-t'}) e^{-t'/\lambda'} \quad \because t > T$$

here $c(t)$: concentration of drugs in tumor at time t.

W and w: the weight of total body and tumor.

D: dose of drug.

T: duration time of infusion and λ: decay constant in whole body and in tumor.

By these equation, if the concentration in tumor should be at least the double of that by venous injection, the most effective infusion duration time is one or two hours.

3. Examination of drugs.
Various type of radioisotopes were infused in this investigation, and it was proved using linear scanning method that 131I-RISHA is gathered in heart, 203Hg-Merphrin in liver and kidneys and 197Hg-Neohydrin in kidneys but 131I-MAA remains in tumor. Daily changes of the concentration of radioisotopes in tumor were also studied by the same method. Biological half life of neohydrin in tumor is about one hour, that of merphyrin about ten hours and that of 131I-MAA is 2.2 days in average. But the fact that in some cases the half life was longer than four days and in other cases were about one day, may account its large variation of the sizes of aggregates.