It is considered that diffusion ability is able to measure by double tracing method using RISA and 133Xe. It is not satisfactory to use 133Xe only for the measurements of pulmonary diffusion and circulation.

Study of Regional Pulmonary Ventilation and Regional Pulmonary Circulation

Y. ANNO, M. SHIMADA, A. TAKESHTA and T. SHIMA

Department of Radiology, Tottori University School of Medicine

To investigate regional pulmonary ventilation and regional pulmonary circulation in various chest diseases, radiopulmonography and scintiscanning of lung after interavenous injection of 131I-MAA were used. Radiopulmonography is a method that intensify with scintillation detector minimal X-rays passed through the chest and record with ratemeter-recorder system.

Thus recorded graphs represent mainly the changes of density of lung tissue due to respiration, but are influenced from various kinds of masses, which get in and out the field seen by the detector during respiration, e.g. tumor, greater blood vessels, heart, diaphragm, bone etc. Authors presented various patterns of curves.

If a tumor get in the field seen by the detector at inspiration and out at expiration, its curve is recorded as if that of paradoxic breathing. Observing the radiopulmonography comparing with the scintigram of lung by 131I-MAA, authors pointed out some interesting correlations between ventilation and blood circulation in various pathologic states e.g. emphysema, tumor, chronic bronchitis, etc.

Combined use of radiopulmonography and 131I-MAA scanning is a useful method of study of regional ventilation and circulation of lung, but for more precise study of regional function, further improvement of technic is expected.

An Experimental Study of the Bronchial Circulation in Dogs using RI (3rd Report)

—Determination of Bronchial Circulatory Flow in Various Chest Diseases—

T. HAGIHARA, T. SUGIHARA, S. NAKAJIMA, S. NAKAJIMA,
H. FUKAYA and A. YAMAGUCHI

It is important for researchers of lung pathophysiology to make study of bronchial circulatory changes in pathological lungs. We have already made morphological study of bronchial circulatory changes in various chest diseases, by means of acrylic resin casts, postmortem angiography, and other roentgenological methods. This time, we have determinated bronchial arterial flow (BAF), using indicator dilution method (RISA as a indicator). We estimated BAF as the difference of left ventricular flow (LVF) and right ventricular flow (RVF). We calculated both LVF from dilution curves obtained from plotting of samples radioactivities, which were taken at regular intervals immediately after injection of indicator into the brachial vein, simultaneously from two cardiac catheters, one of these catheters was inserted into pulmonary artery via
jugular vein, and another into femoral artery.

For our experiments we used male dogs (12-22 Kg). We have determined BAF in 10 normal dogs and 30 invaded dogs (pleurisy, bronchiectasia, pulmonary embolism and pulmonary infarction). Pleurisy was made by terebene oil injection in pleural cavum. Bronchiectasia was made by sponge, which was inserted for fortnight after cervical vagotomy. Pulmonary embolism and pulmonary infarction were made by sponge embolus inserted into pulmonary artery (original method of our department).

Results of experiments: We calculated BAF as percentage of LVF (BAF%) for convenience of comparison. In normal dogs, it was 0.06-4.48% (average 1.56%). For pleurisies, we made determinations of BAF at 7 days and 21 days after terebene injection. In 7 days pleurisies, BAF% were 0.99-4.13% (ave. 2.14%), and 21 days 0.13-11.64%. For bronchiectasias, we made determinations of BAF% at 30 days and 60 days after we pulled out the sponge from bronchus. After 30 days BAF% were estimated 0.70-11.72% (ave. 7.17%), and after 60 days 1.84-27.40% (ave. 12.64%), in both stadium we observed considerable increase of BAF%. For pulmonary embolisms, we made determinations of BAF% at 10 minutes, 7 days and 14 days after insertion of embolus. After 10 minutes, BAF% were estimated 3.74-11.24% (ave. 7.43%), after 7 days, 4.36-13.63% (ave. 8.01%), and after 14 days 6.34% (one example only). For pulmonary infarctions, we made determinations of BAF% at 10 minutes, 7 days, and 21 days after sponge insertion. After 10 minutes, BAF% was 12.96%, after 7 days, 5.2%, after 21 days, 16.72% one example for each stadium).

Conclusion: We observed BAF% increase in the cases of each above mentioned chest diseases, and especially in pulmonary embolism, pulmonary infarction and bronchiectasia. We could also observed that the degree of BAF% increase were different according to sorts and stadium of diseases.

Quantitative Measurement of Pulmonary Arterial Blood Flow with 131I-MAA

Y. Sakamoto, K. Kiyono, H. Fujimori, T. Yokoyama and T. Kobayashi

Department of Radiology, Faculty of Medicine, Shinshu University, Nagano

The concentration of MAA injected intravenously is directly related to regional pulmonary arterial blood flow in various parts of the lung.

The concentration of 131I-MAA in various regions of the lung is determined by radioisotope scanning. The quantitative measuring of regional pulmonary arterial blood flow is performed by counting of dots in the scintigram. Counting of the dots in the scintigram is not accurately related to the area of increased radioactivity because of its overlapping or miscounting of dot mechanism. Therefore adequate rate down is necessary.

To obtain more quantitative data than that provided by the scintigram, a series of profiles of concentration of the radioactivity is obtained by moving the detector across the entire chest field. The output of the detector is used as input to a rate meter and X-Y recorder. The area below the curves is measured by planimetric device and more accurately related to regional pulmonary arterial blood flow than the other.

After the radiation therapy of the carcinomas of the chest and the oesophagus, radiation pneumonitis and radiation fibrosis occur in the lung as well known. By multiple profile scan of the lung, the changes in regional pulmonary arterial blood flow were shown more earlier than the roentgenological changes.