An artificial amino acid radiopharmaceutical for single photon emission computed tomographic study of pancreatic amino acid transports ¹²³I-3-iodo-alpha-methyl-L-tyrosine

Keiichi Kawai,* Yasuhisa Fujibayashi,** Yoshiharu Yonekura,** Junji Konishi,** Hideo Saji,*** Akiko Kubodera* and Akira Yokoyama***

*Faculty of Pharmaceutical Sciences, Science University of Tokyo
School of Medicine and *Faculty of Pharmaceutical Sciences, Kyoto University

¹²³I-3-iodo-alpha-methyl-L-tyrosine (¹²³I-L-AMT) was selected and its characteristics on pancreas accumulation, metabolic selectivity and metabolic stability of ¹²⁵I-L-AMT were studied. The studies on rat tissue slice as well as mouse biodistribution proved very high accumulation of ¹²⁵I-labeled L-AMT in the pancreas, which was remarkably inhibited by the active transport inhibitor, ouabain. ¹²⁵I-L-AMT does not enter into protein synthesis and general amino acid catabolism. Moreover, ¹²⁵I-L-AMT was very stable against enzymatic deiodination. Thus, the above studies indicated that the ¹²³I-labeled L-AMT was an "artificial amino acid" radiopharmaceutical to be used for the selective measurement of the membrane amino acid transport rate in the pancreas.

Key words: radioiodinated amino acid, amino acid transport, pancreas, radiopharmaceutical metabolic stability