Preparation of a fine powder of 2-deoxy-2-[18F]fluoro-D-glucose suitable for inhalation to diagnose lung diseases by means of PET

Fumiyoshi Олма,* Tatsuo Ido,* Toshihiro Таканаshi,* Jun Hatazawa,* Masatoshi Ito,*
Hidetada Sasaki,** Masaru Yanai,** Takashi Алкаwa,** Tamotsu Такізніма,**

Kenji Авіко*** and Masafumi Амано***

*Cyclotron and Radioisotope Center, Tohoku University

**First Department of Internal Medicine, Tohoku University School of Medicine

***MECT Corporation

Fine 2-deoxy-2-[¹⁸F]fluoro-D-glucose (¹⁸FDG) powder was obtained by adding diethyl ether into a methyl alcohol solution of ¹⁸FDG and other sugar as seed. When micronized particles of sodium N-acetyl-neuraminate (Neu5Ac-Na) were used as seed crystals, particles containing ¹⁸FDG were obtained and 80% of them were smaller than 10 μ m in size. More than 60% of these crystals were 4–6 μ m in size. In a preclinical study of forced inhalation in a dog, the ¹⁸FDG fine powder was mainly distributed in the trachea. The radioactivity in the trachea then increased once and a gradual decrease followed. The radioactivity was transferred into the blood and radioactivity incorporation into the heart was observed. After a normal volunteer inhaled ¹⁸FDG dry powder aerosol, the radioactivity was found in the respiratory tract and the peripheral area of the lung by means of PET. Absorption and *in vivo* dynamics of the ¹⁸FDG were also analysed.

Key words: PET study, ¹⁸FDG dry powder aerosol, Mucociliary clearance