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PET Kinetic analysis
—Pitfalls and a solution for the Logan plot
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The Logan plot is a widely used algorithm for the quantitative analysis of neuroreceptors using PET
because it is easy to use and simple to implement. The Logan plot is also suitable for receptor
imaging because its algorithm is fast. However, use of the Logan plot, and interpretation of the
formed receptor images should be regarded with caution, because noise in PET data causes bias in
the Logan plot estimates. In this paper, we describe the basic concept of the Logan plot in detail and
introduce three algorithms for the Logan plot. By comparing these algorithms, we demonstrate the

pitfalls of the Logan plot and discuss the solution.
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I. INTRODUCTION

PET enables us to quantify various functionalities of
living tissue such as receptor density and the activity of
enzymes. Ordinarily, to derive the functionalities, a non-
linear optimization algorithm is applied to measured PET
data of a time history of radioactivity in tissues (tissue
time-activity curve, tTAC; in Bg/m/) and in arterial plasma
(plasma time-activity curve, pTAC; in Bq/ml) to analyze
the compartmental models parametrically.! Applying the
algorithm to every voxel but not to a tTAC averaged in a
region of interest (ROI) allows the imaging of some
functionalities of living tissues. However, the algorithm
suffers from some problems that make it unsuitable for
the kinetic analysis in a voxel-by-voxel manner, such as
physiologically unacceptable parameter estimates, de-
pendency to an initial guess” and slow calculation time.

The Logan plot? is an algorithm used widely for recep-
tor imaging because of its simple mathematical imple-
mentation and fast computation. The Logan plot can be
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realized as a line estimation,* making it stable and very
fast. Thus, the Logan plot is preferred for voxel-by-voxel
kinetic analysis. However, the estimates suffer seriously
from noise in the tTAC.

In this paper, we describe the theoretical background of
the Logan plot. We mention the pitfalls of the Logan plot,
a bias in estimated receptor quantity, and discuss the
solution.

II. THEORY OF THE LOGAN PLOT

The Logan plot is derived by integrating a set of differen-
tial equations describing the behavior of an administered
ligand in target tissues. (1) represents the basics of Logan
plot in which the two quantities have a linear relationship,
and the slope of this relationship and the y-intercept are
denoted as a and f: ratios of an integrated tTAC and
tTAC, and an integrated pTAC and tTAC. (2) shows the
slope and y-intercept for the two-compartment model,
aoc and frc, and o3¢ and fBc in (3) represent those for a
three-compartment model. The detailed derivation is avail-
able in the appendix.
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C(1),Cy(1), and By denote tTAC, pTAC, and blood volume
[m//m/], respectively. C(t) is a true tTAC, which does
not contain the activities originating from blood vessels
in a voxel or ROI; this means By. K| to k4 are kinetic
parameters of the administered radioligand in tissues that
were proposed originally by Mintun® and extended to the
general compartmental model for receptor study by
Koeppe.® To summarize, K; represents the transportation
rate of a ligand from capillary to tissues [m//min/g], and
k> is the clearance rate back to the venous system [1/min].
k3 and k4 are the association and disassociation rates of the
ligand to and from the specific binding sites [1/min]. More
descriptions can be seen in an other article in this survey
series.!

The ratio of the following quantities reaches a constant
equilibrium state: C, and C for the two-compartment
model; and the measured tTAC and the activity in tissues;
and the measured tTAC and the activity originating from
unbound ligand in the tissues for the three-compartment
model. Under these conditions, the y-intercepts of 3
become constant against time, and a linear relation is
established in (1).

If By is small enough in (2) or (3), the slope of the Logan
plot corresponds to Ki/k> for the two-compartment model
and to (K1/k2)(1 + ks/ks) for the three-compartment model.
These quantities are named the total distribution volume,
DV, and they are the substituted measures for receptor
densities. Note that the slope derived from the Logan plot
is biased from the true DV because By is contained in the
term of the slope.

III. MERITS OF THE LOGAN PLOT

The Logan plot has three merits: independence from a
kinetic model, stable algorithm, and fast computational
time.

First, the Logan plot is applicable in both two- and
three-compartment models. This means that the con-
figuration of the compartmental model does not affect the
usability of the Logan plot, although it should be deter-
mined before the model estimation in an ordinary kinetic
analysis using nonlinear estimation.

Second, the Logan plot is realized as a line estimation.*
Because the line estimation algorithm has closed forms,
we can compute the slope and y-intercept directly using
pTAC and tTAC. In contrast, in a nonlinear model estima-
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Fig. 1 Typical Logan plot of [''C]TMSX, an antagonist of
adenosine Axa receptors. The upper panel (A) shows the tTACs,
and the lower panel (B) demonstrates the corresponding Logan
plots. The plot of the centrum semiovale and the occipital cortex
are shown in black and gray, respectively, and the filled symbols
show the data applied to the line estimation. The receptor density
is greater in the occipital cortex than in the centrum semiovale,
and the slopes reflect this difference. In these data, the DV of the
centrum semiovale and occipital cortex were 0.95 and 0.72 [m//
g], respectively.

tion, the model parameters are sought iteratively, as
described below.

In the nonlinear model estimation, the estimation be-
gins from given parameters as initial values. The next best
estimates are tried and found based on the local shape of
a cost function to be minimized that is usually the root
mean square between the measured and predicted tTAC.
This step is repeated until no further improvements are
found in the estimates or the cost function. Finding the
precise shape of the cost function is complicated because
the relationship between the model parameters and the
cost function is not straightforward, and this causes mul-
tiple local optima in the cost function. An ordinary non-
linear optimization algorithm such as the Lovenberg-
Marquardt method” and Nelder-Mead Simplex method®
can find only the local optimal point, which is not neces-
sarily globally minimal and can vary depending on the
given initial guess.

As mentioned above, the nonlinear model estimation is
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Fig. 2 Static images in (A) and images of total distribution
volume in (B) computed by the Logan plot for [''C]TMSX, a
radioligand for the adenosine Axa receptors.

affected by the initial values. In the case of bad noise
statistics in tTAC, the results of the estimation sometimes
change with the given initial values or can sometimes
converge to physiologically unacceptable values such as
negatives or values larger than 1.0.? Fortunately, the
Logan plot assures reasonable estimates.

Third, the Logan plot has fast computation. The itera-
tive implementation of a nonlinear model estimation
demands extensive computation, and convolution opera-
tions are required to calculate the predicted tTAC, which
complicates the computation. In a typical Logan plot
implementation, the computation time is only 2 [usec/
voxel], but an ordinary compartment model analysis
requires 1 [sec/voxel] if the standard desktop computer
with Windows XP™ is used.

IV. EXAMPLE OF THE LOGAN PLOT

An example of the Logan plot is shown in Figure 1 and has
been derived from [''C]TMSX, an antagonist of the
adenosine Aza receptor.’ Figure 1-(A) shows the tTACs
derived from the centrum semiovale and occipital cortex.
The corresponding Logan plots are displayed in (B),
which shows superimposed estimated lines and the data
used in the line estimation as filled plots. The tTACs
decrease in the delayed phase, a typical pattern observed
with reversible ligands. In the Logan plot, a linear relation
is also found 20 minutes after administration. Because of
its physiological aspect, the centrum semiovale has neg-
ligible A24 binding sites.” Therefore, the slope of the plot
is smaller in the centrum semiovale (= 0.72) than in the
occipital lobe (= 0.95).

Figure 2 illustrates one benefit of the Logan plot in
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Fig. 3 The Logan plot applied to [''C]SA4503, an antagonist
of sigmaj receptors. The upper panel (A) shows a typical tTAC
derived from the temporal cortex of a normal subject. The lower
panel (B) illustrates the corresponding Logan plot where the
filled plots represent the data for the line estimation. Although

the waveform seems to depart from the shape expected for
reversible binding, a linear relationship is apparent in (B).

receptor imaging. Panel (A) shows the summed images,
and (B) shows images of DV; computed by the Logan plot
where the left and right images present the slices including
the striatum and centrum semiovale, respectively. The
DV;images have better contrast than the summed images
because they represent the density of the A2a receptors.
The centrum semiovale appears darker than the cerebral
cortices in (B) and this is more obvious in (B) than in (A).
Also, the striatum is visualized more clearly in (B) than in
(A).

Another example is shown in Figure 3, which repre-
sents the calculations for [''C]SA4503,'° a radioligand
for the sigma; receptors. Because of the high affinity of
[''CISA4503 to the binding sites, the tTTAC does not
demonstrate reversible behavior and its value does not
decrease when compared with Figure 1-(A). However,
the Logan plot shown in Figure 3-(B) has a fairly linear
relationship 30 minutes after administration of the an-
tagonist. As Logan remarked, the condition for the Logan
plot is rather easy to establish.!!
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Fig. 4 Statistical distribution in the Logan plot. 5000 realiza-
tions of voxel-based tTACs were mimicked, and their statistical
fluctuation of each plot in the Logan plot was displayed as two-
dimensional histograms in the form of a contour plot.

The Logan plot is thought to be a powerful tool for
receptor imaging in PET.

V. ALGORITHM

Because the implementation of an algorithm influences
the performance of the Logan plot, we discuss three
algorithms in this section. The first two algorithms are
related to a line estimation based on the original idea in the
Logan plot: an ordinary regression line estimation (OLE)
and a line estimation using a principal component, PC.!2
The third algorithm estimates tTAC using the relationship
available in the Logan plot in a manner of a likelihood
estimation, Ogden’s Logan plot, OP.'3

V-A. Logan plot based on regression line estimation
An easy choice is OLE in which the sum of the squared
differences is minimized between an estimated line and
given data measured along a line perpendicular to the
abscissa. This choice is a mistake for imaging, however,
because OLE assumes that the noise of the independent
variables, named X, is much smaller than that of the
dependent variables, Y, and if this assumption is not
established, the absolute value of the estimated slope by
OLE becomes smaller than the true value.'* For the Logan
plot, as reported in, > the noise in tTAC causes a negative
bias in DV, estimates, and the magnitude of the bias
depends on the noise level. Large noise causes a large
underestimation of DV/.

This situation is serious in the formation of parametric
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Fig.5 Comparison of the estimation performance of the Logan
plot using an ordinary regression line estimation (solid black
line), PC-based line estimation (solid gray line), and the Ogden’s
Logan plot (dashed black line). DV; was varied from 5 to 35, and
100 tTACs were simulated with contamination by noise found
in a voxel-based tTAC for each DV/. Then, the estimated DV,
was computed using the three algorithms. Medians and the 75%
and 25% quintiles are plotted using a bar plot. A line of identity
is indicated by a dotted line. For clear visualization, the abscissa
is slightly shifted to prevent overlapping.

images because voxel-based tTACs are highly tainted by
noise. According to (1), both X and Y contain a voxel-
based tTAC of C(¢) in the denominators. The noise in a
voxel-based tTAC is large because of the small amount of
radioactivity in a voxel, and the independent variable is
contaminated by the noise in tTAC. The exact fluctuation
caused by noise in voxel-based tTACs is demonstrated in
Figure 4 where 5,000 realizations of tTACs containing
voxel-based noise were generated and the Logan plots
were carried out. Their distributions are shown as two-
dimensional histograms in the form of a contour plot. The
deviation in the abscissa cannot be ignored, and the
deviation between X and Y is correlated when X and Y are
large.

V-B. Logan plot based on principal component

A better choice is to apply PC,'? in which the minimized
distances are measured perpendicular to an estimated line.
(4) is the operational equation for PC:

S =2,—X,~2, Syy =2,~y,-2, va = Z[ XiYi
-_ 1 -1
x = ﬁEixi’ y= ﬁziyi
o= (S = Syy) + \/(SA‘X = Sp)? + 4(Sy)*
25,

“4)

ﬂ:y__aje_

where aand [J’Arepresent the estimated slope and y-
intercept, respectively, x; and y; are the ith measured set of
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data, and N is the number of frames during the period in
which the Logan plot is applied. Because PC considers the
existence of noise in both the independent and dependent
variables, better performance can be expected.

V-C. Likelihood approach for Logan plot

Another advanced approach than PC was proposed by
Ogden.'? In OP, an anticipated tTAC, C, is computed
based on the relationship in the Logan plot in a recurring
equation:

SoCW+tclwi-a f "C(uw)du
3
B—gWi (5)

where C; and W; are the measured tTAC at the ith frame
and it frame duration, respectively. (5) is derived from the
relationship in the Logan plot. The tTAC at the ith frame
appears as the second term in the numerator is introduced
using a trapezoidal integral.

The slope and y-intercept of the Logan plot are reck-
oned through likelihood estimation by fitting the meas-
ured tTAC to the anticipated one:

Clap) =

. N . 2
[aB] = argl;;inz { Ci - cf(a,ﬁ)} . 6)

In OP, the estimation process is performed in a time
domain, and OP is free from the problems caused by the
noise of independent variables in the case of OLE.

VI. PITFALLS AND SOLUTION

To demonstrate the pitfalls of the Logan plot related to the
noise in tTAC, the performance of the three algorithms
and a dependency of estimated DV; on the noise are shown
in Figure 5 and Figure 6, respectively, which were derived
from a set of simulations that considered a voxel-based
parameter estimation.

Simulated tTACs were computed using a clinically
measured pTAC in a [''C]SA4503 dynamic study with
the defined kinetic parameters for each simulation. The
noise was then added to the level observed in voxel-based
tTACs. The noise was assumed to have a Gaussian distri-
bution whose variance was proportional to the true tTAC
and whose mean was zero. To derive the descriptive
statistics, 100 tTACs were realized.

The total performance of DV, estimation is illustrated in
Figure 5. In this simulation, K1, DV (= K1/k»), and k3 were
set to their typical values of 0.1, 0.49, and 0.45, respec-
tively, and DV, was varied from 5 to 35. This simulation
produced a range of k4 between 0.006 and 0.049. The
median and 25% and 75% quartiles are indicated as a bar
plot.

OLE introduced incorrect DV; estimates because the
medians were much lower than the true value. PC also
showed a small underestimation, which tended to worsen
in larger DV. In contrast, OP gave almost true DV;. OLE
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Fig. 6 Dependency of DV, estimates on K. tTACs were
simulated with DV, fixed at 53 and with K varying. Noise was
added to the level observed in a voxel-based tTAC. The plotted
DV, were estimated using the three algorithms. The means and
standard deviations derived from 100 realizations are shown.
The three algorithms of the Logan plot based on an ordinary
regression line estimation, PC-based line estimation, and the
Ogden’s Logan plot are shown.

showed the smallest estimation deviation of the three
algorithms; PC produced an intermediate estimation de-
viation, and OP produced the largest estimation deviation.

The noise dependency of DV, estimates on K is shown
in Figure 6. K1 was varied within a physiologically fea-
sible range between 0.05 and 0.8 while DV; was fixed at
53, a typical value of [''C]SA4503 for normal subjects.'®

Although ideally no dependencies should be observed,
the estimates using OLE correlated with K1, with a low K
making the estimates lower. That is why the amplitude of
tTAC tends to be governed mainly by K1 when the tTAC
decreases slowly, as in the case of [''C]SA4503. The
noise level becomes large when the amplitude is small. A
small K1 causes a low amplitude and large noise level in
tTAC, and leads to underestimating the estimated DV,.
This dependency leads to erroneously enhanced contrast
of a DV, image; that is, the contrast of a DV; image is
enhanced because of the mathematical problems in the
estimation algorithm, and the enhanced image matches
the preconceived image the people want to see. The DV;
image with OLE causes misinterpretation of the spatial
distribution of the neuroreceptors, and the PC and the OP
are not correlated with K.

One may inspect the differences between the three
algorithms in Figure 7. These DV, images were computed
from the same PET data of ['!C]SA4503 administered to
a young male subject. The slice includes the basal ganglia.
Note that the displayed ranges obtained using the OLE
and PC algorithms differ from that obtained using OP.
DV, in the images using OLE is smaller than those of the
other algorithms; the PC image produced an intermediate
value, and OP had the largest DV,. This tendency
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Fig. 7 DV;images using the three algorithms: an ordinary line estimation of OLE, a PC-based line
estimation of PC, and the Ogden’s Logan plot of OP. The images were made from the same original PET
data using [''C]SA4503, a radioligand for the sigma; receptors.

corresponds to the simulation results as shown in Figure 5.
Although the contrast between brain structures was main-
tained in all algorithms, the image quality was poor in OP.

The computation time was noticeable. In our imple-
mentation using MATLAB™ R14 (MathWorks, MA,
USA), the computational times per slice were 0.11 [msec]
for OLE and PC, and 9.7 [min] for OP using a Linux
machine equipped with a 3.2 [GHz] Pentium-IV proces-
sor. OLE and PC are fast to run because they have closed
forms to compute DV/,. In contrast, OP requires a nonlin-
ear optimization algorithm, and it demands computation
because the implementation is iterative.

As a consequence, PC is the optimal choice for receptor
imaging using the Logan plot. OP is also attractive be-
cause it is free from the problem in a line estimation
caused by the noise in an independent variable. Further
studies are expected to make the algorithm faster and to fix
the problems identified.

VII. OTHER TOPICS

Other related topics to the Logan plot are summarized.
The first issue is the omission of arterial blood sam-
pling. The Logan plot requires pTAC to calculate DV, as
shown in (1). For clinical considerations, omission of
arterial blood sampling is welcome because arterial blood
sampling requires the placement of a catheter into the
brachial artery, which can be uncomfortable for the pa-
tient and increases the measurement time for the PET
scan. For DV, estimation, Logan introduced additional
assumptions.!” If k> can be given a priori, and if the
existence of a receptor poor region, a reference region, can
be assumed, Cy(f) is canceled in (1). Moreover, if the
equilibrium state between C(f) and Cp(?) is achieved, k> is
unnecessary. A practical issue for Logan’s approach is
that k> is difficult to specify without knowledge about the
behavior of the administered radioligand. Also, &> is
uncommon in tissues, and it is laborious to obtain the
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values for every voxel or target region. Naganawa devel-
oped a new statistical information separation algorithm of
EPICA to study the adenosine A1'® and A24°. EPICA does
not require any assumptions of the kinetics of radio-
ligands."

Second, variations of the Logan plot are available. The
Ogden plot'3 has been mentioned earlier. Ichise proposed
a variation of the original Logan plot,'” which assumes the
existence of a reference region in which Cp(¢) is not
required for the computation. The algorithms related to
the Logan plot are compared in Ichise’s study.?

Last, a starting time for the Logan plot should be
considered. As mentioned in §1I, the Logan plot is appli-
cable if some equilibrium conditions are established.
Accordingly, the starting time should be determined care-
fully. Some details of this are discussed by Ichise.?

VIII. CONCLUSION

Although the Logan plot is a routine tool for PET func-
tional imaging, additional studies are still required. The
Logan plot is easy to use, but thorough understanding of
the algorithm is needed to utilize fully the information in
measured PET data. We believe that the Logan plot has
widespread applicability for quantitative imaging with
PET in various clinical and physiological fields.

() The topics on the omission of arterial blood sampling will be
discussed in more detail later in this survey series.

APPENDIX A
DERIVATION OF LOGAN PLOT IN MATRIX FORM

The Logan plot is applicable for both two- and three-

compartment models, thus its derivation begins with a
matrix fashion, and the operational equations for each
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model are presented.

The measured PET data, C(¢), are the sum of the
radioactivity concentrations in free and specific binding
compartments, which are denoted as Cr(¢) and Cp(),
respectively. Considering contribution from vessels in a
voxel or ROI, C(7) is written as:

C(6) = (1 = B)C(H) + B,C,(0) (A1)
C() = Cr(1) + Ci() (A.2)

where By is the blood volume [m//m/], and C(t) is the total
radioactivity concentration in a tissue. In a strict sense,
Cy(t) in (A.1) should denote the radioactivity in whole
blood. In the following mathematical handling, Cy(¢) is
assumed to be equal to that in whole blood. This assump-
tion causes bias in the Logan plot when the metabolite is
not small enough to ignore.

The differential equation to describe a compartmental
model is:

dA

o = KA@ +C,00. (A3)

For the two-compartment model, the equation is:
A = C. K = - ko, Q= K, (A4)
and for the three-compartment model, the equation is:

A0 =iy o)

o[-tk K (A.5)
L ]
o =[x o]

Here, T means a matrix transposition. To calculate C(t), a
new vector of U is defined:
1 for the two-compartment model

Ul

[ﬂ for the three-compartment model (A.6)

and then C(7) can be represented as UA(Z).
The Logan plot starts to be derived by integrating (A.3),
and K~! is premultiplied on both sides, which gives:

A "Aw)du = - K'Q S ‘Cwdu + KAD. (A7)

Here, no activities exist at the beginning of the PET scan,
e.g. A(0) = 0. Next, the integral of C (f) can be represented
using (A.6):

A "Cluydu = U ff Aw)du

=-UK'Qf 'C(w)du + U'K'A®D).
(A.8)

However, C(?) is free from the activity originating from
blood vessels and is not measurable. Using (A.1), an
integrated measured tTAC is written as:

Vol. 21, No. 1, 2007

Jy Cadu= (1 -B,) fo CQuydu + B, ) C,(u)du
=(1-B) (- UK "Co(u)du + UTK-IA(;))
+B.f 'C(w)du
= {(1 -B)(-UK'Q) + Bv} _[0 'C(u)du
+ (1 = B)U'K'A(D. (A.9)

If both sides are divided by C(f), a matrix form of the
Logan plot is derived:

Sy Cwdu ) SoCouydu
T ={(1 - Bv)(_(ﬁK lQ) + Bv} W
! UTK'A(r) X
+(1-By) WD
=oX+p. (A.10)

(A.10) denotes a linear relation between the X and Y if 8
is constant against time, a condition where the Logan plot
is established.

APPENDIX B
LOGAN PLOT FOR THE TWO-COMPARTMENT MODEL

From (A.4) and (A.10), for a two-compartment model, the
slope is written as:

ae=(1 —BV)[IS—;+BV. (B.1)

If By 0 0, the slope of the Logan plot corresponds to K/
k>, which is a distribution volume. The y-intercept is:
I\~ -
_ 1-g)C@ _ C(r)
/32(:_(1 _BV) C(t) ~__(1 _Bv)kzc(t)
- _ 1 - Bv C(t)
ky (1 =By)C(@) +BCpy(t)”

(B.2)

By dividing the numerator and the denominator by C (t):

1-B, 1

k  (1-By)+B,SY
o (B.3)

ﬁzcz—

can be derived. (B.3) indicates that the Logan plot is
established if C(£)/C(f) becomes constant against ¢.

APPENDIX C
LOGAN PLOT FOR THREE-COMPARTMENT MODEL

For a three-compartment model, the slope is:

_ 1-B, ko -k K
e == Zp [—k3 —(k2+k3)M0}BV
k3

=(1 —BV)%(I +E)+Bv. (C.1)
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If By = 0, the slope corresponds to the total distribution
volume of a three-compartment model of (K1/k2)(1 +
ks/ks).

The condition to establish the Logan plot for a
threecompartment model is rather complicated. From
(A.5) and (A.10):

L —ky —ky4 szl‘)
Tk [l 1] |:_k3 —(kz + k3)] |:Cb(t):|

Pic=(1-By) co
__1-B, €O, G0
=T ok {(k3 tRen e en } (C.2)

Therefore, if C(t)/C(t) and C;(t)/C(t) are constant against
time, the y-intercept becomes constant, and the Logan
plot is appropriate for the three-compartment model.
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