Radioimmunoscintigraphy of xenografted human thyroid carcinoma

Kiyoshi Koizumi,* Kunihiko Yokoyama,* Naoto Watanabe,* Suzuka Kawabata,* Noriyuki Shuke,* Seigo Kinuya,* Tamio Aburano,* Norihisa Tonami,* Kinichi Hisada,* Nobuo Sato** and Yoriaki Kurata**

*Department of Nuclear Medicine, School of Medicine, Kanazawa University
**Department of Pathophysiology, Cancer Institute, Kanazawa University

We developed monoclonal antibodies against human thyroid cancer-associated antigen by fusing mouse myeloma cells with mouse spleen cells immunized by insoluble fraction of homogenized thyroid papillary carcinoma cells. One monoclonal antibody (KTC-3, IgM) was selected to evaluate basic usefulness for radioimmunoscintigraphy in xenografted human thyroid carcinoma. KTC-3 was labeled with $^{131}{\rm I}$ by Iodogen method of 20 to 1 Iodogen to IgM molar ratio. It was also labeled with $^{111}{\rm In}$ by cyclic DTPA anhydride method of 20 to 1 DTPA to IgM molar ratio. The labeling efficiency and specific activity for $^{131}{\rm I}$ labeling were 16.5% and 0.66 mCi/mg IgM respectively, and those for $^{111}{\rm In}$ labeling were 12.7% and 1.6 mCi/mg IgM. Imaging and biodistribution of labeled KTC-3 were evaluated in nude mice bearing thyroid anaplastic carcinoma (THC-5-JCK). The tumors were well visualized 3 and 5 days after injection of $^{131}{\rm I}$ KTC-3. Tumor uptake of $^{131}{\rm I}$ KTC-3 on day 7 was 0.52 \pm 0.27% ID/g and tumor to blood ratio was 1.98 \pm 0.76 (n=6). Those of $^{111}{\rm In}$ KTC-3 were 0.88 \pm 0.09% ID/g and 5.51 \pm 3.36 (n=6). In conclusion, KTC-3 is promising for radio-immunoscintigraphy of thyroid cancer.

Key words: Radioimmunoscintigraphy, Monoclonal antibody, Thyroid cancer