A feasibility study of [11C]SA4503-PET for evaluating sigma₁ receptor occupancy by neuroleptics: the binding of haloperidol to sigma₁ and dopamine D₂-like receptors Kiichi Ishiwata,* Kenji Oda,** Muneyuki Sakata,*** Yuichi Kimura,* Kazunori Kawamura,* Keiichi Oda,* Toru Sasaki,* Mika Naganawa,***** Kunihiro Снінага,*** Yoshiro Окиво***** and Kenji Ishii* *Positron Medical Center, Tokyo Metropolitan Institute of Gerontology **Section of Liaison Psychiatry and Palliative Medicine, Graduate School of Tokyo Medical and Dental University ***Graduate School of Information Science, Nara Institute of Science and Technology ****JSPS Research Fellow, Tokyo ****Department of Psychiatry, Nippon Medical School We investigated feasibility of positron emission tomography (PET) with [11 C]SA4503 for evaluating the sigma₁ receptor occupancy rate by neuroleptics. Haloperidol, which is well known to bind dopamine D₂-like receptor (D2R) as well as to be a representative non-selective antagonist for sigma₁ receptor (σ 1R), was selected as a model drug. Three healthy male subjects underwent 60-min [11 C]raclopride-PET and 90-min [11 C]SA4503-PET scans successively at a 120-min interval twice in a day for baseline measurement and on another day for haloperidol-loading measurement 16 hours after peroral administration of 3 mg of haloperidol. Binding potential (BP) of [11 C]raclopride and [11 C]SA4503 was quantitatively evaluated and the σ 1R and D2R occupancy rates were determined. D2R occupancy rates by haloperidol were 64% and 62% in the caudate and putamen, respectively, 16 h after the administration, while σ 1R occupancy rates were approximately 80% in all seven regions investigated including the caudate, putamen and cerebellum 18 h after the administration, suggesting that the σ 1R receptor occupancy rate by haloperidol was slightly larger than the D2R receptor occupancy rate. We concluded that [11 C]SA4503-PET can be used for evaluating the σ 1R occupancy rates by neuroleptics or other drugs. **Key words:** [11C]SA4503, sigma₁ receptor, receptor occupancy, haloperidol, positron emission tomography