Radiosynthesis and *in vivo* evaluation of ¹¹C-labeled 1,5-diarylpyrazole derivatives for mapping cyclooxygenases Yoshihiko Fujisaki,* Kazunori Kawamura,** Wei-Fang Wang,** Kiichi Ishiwata,** Fumihiko Yamamoto,* Takashi Kuwano,*** Mayumi Ono*** and Minoru Maeda* *Graduate School of Pharmaceutical Sciences and ***Graduate School of Medical Sciences, Kyushu University **Positron Medical Center, Tokyo Metropolitan Institute of Gerontology We prepared ¹¹C-labeled 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1*H*-pyrazole ([¹¹C]1) and 4-[5-(4-methoxyphenyl)-3-trifluoromethyl-1*H*-pyrazol-1-yl]benzenesulfonamide ([¹¹C]2) for imaging COX-1 and COX-2 isoforms, respectively, by positron emission tomography. [¹¹C]1 and [¹¹C]2 were synthesized in high radiochemical yields by *O*-[¹¹C]methylation with [¹¹C]methyl triflate in acetone containing an equivalent of NaOH as a base with respect to the phenolic precursors. *In vivo* evaluation in rats bearing AH109A hepatoma demonstrated minimal specific binding of [¹¹C]1 to COX-1 in peripheral organs, such as the spleen and small intestine. Carrier-saturable uptake of [¹¹C]2 was found in the spleen, but COX-2-specific binding of [¹¹C]2 was not identifiable in the brain, AH109A hepatoma or other peripheral organs, although *ex vivo* autoradiography showed regionally different distribution in the brain and AH109A. The results suggest that neither [¹¹C]1 nor [¹¹C]2 is a suitable radioligand for *in vivo* biomarkers of COX enzymes, mainly because of marked non-specific binding. **Key words:** cyclooxygenase inhibitor, carbon-11, radiosynthesis, tissue distribution