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INTRODUCTION

COLORECTAL CANCER remains the second most common
cause of cancer death in the United States and European
countries. Advances in treatment strategies include
laparoscopic colon resection and the local excision of
small tumors, followed by radiation and chemotherapy.
However, approximately 40% of patients who undergo

first curative surgery for colorectal carcinoma present
with suspected recurrence at the first year follow-up.1,2

Serum carcinoembryonic antigen (CEA) is a well-
established method for the detection of local tumor recur-
rence and metastases in the postoperative surveillance of
colorectal carcinoma patients.3–8 Circulating CEA levels
provide a very sensitive measure of recurrence. In addi-
tion, preoperative serum levels of CEA correlate more or
less with tumor stage and prognosis.9,10 Summarizing, the
serum level of CEA may reflect tumor burden in colorectal
cancer patients.11,12

18F-fluorodeoxyglucose positron emission tomogra-
phy (FDG PET) is an advanced imaging technique and
allows a highly sensitive whole body search for malignant
foci, which are detected by their increased glucose me-
tabolism versus benign tissues, and successful FDG PET
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scanning has been performed in a wide variety of cancers.
Several studies have demonstrated the added value of
FDG PET in terms of detecting recurrent colorectal
cancer, especially in patients with elevated serum CEA
levels.13–20 However, no investigation has been con-
ducted on the relation between PET findings and serum
CEA levels to the best of our knowledge. The purpose of
this study was to determine the correlation between serum
CEA levels and metabolic volume by FDG PET in post-
operative colorectal cancer patients as a basic study for
PET use in the detection of recurrent colon cancer.

PATIENTS AND METHODS

Patients
We retrospectively reviewed the FDG PET images of
colorectal cancer patients from February 2000 to October
2003. Patients with preoperative staging were excluded.
All patients had previously treated by surgical resection
and/or chemotherapy. Twenty-nine consecutive patients
with recurrent or metastatic single or multiple lesions of
adequate size (axial diameter > 1 cm, minimum volume

Fig. 1   Selective tumor boundary as determined by isocontour
value (SUV) 2.5 in ROI.

Table 1   Lesion characteristics of the included 29 patients

Patient
CEA

SUVmean
PET volume PET metabolic

Lesion sites in PET
Confirmed site by

(ng/ml) (cm3) volume (cm3) histopathology

1 28.8 10.11 60.5 611.655 3 lesions in Liver —
2 53.1 2.98 58.4 174.032 Rectum —
3 41.6 2.54 43.8 111.252 Rectum —
4 360 19.5 238.8 4656.6 2 lesions in Liver —
5 29.6 4.95 65.15 322.4925 Liver Liver
6 5.6 3.63 46.6 169.158 Liver/C-spine Liver
7 13.5 3.1 34.6 107.26 LLL LLL
8 30 8.76 68.48 599.8848 Liver Liver
9 6.6 3.65 80.54 293.971 Liver Liver

10 16.4 3.19 64.2 204.798 2 lesions in Pelvic cavity Both ovaries
11 26.8 6.33 78.9 499.437 Liver/RLL —
12 43.5 4.2 84.6 355.32 Liver Liver
13 9.2 5.34 96 512.64 Rectum Rectum
14 83.8 12.75 82.6 1053.15 3 lesions in Liver/spleen —
15 9.7 6.68 46.86 313.0248 RUL/LLL RUL
16 11.8 5.43 11.5 62.445 C-spine/Rt pelvic bone C-spine/Rt pelvic bone
17 27.9 7 66.4 464.8 Liver Liver
18 13.7 6.42 11.4 73.188 T-spine T-spine
19 34.6 3.09 104.7 323.523 RLL RLL
20 331 5.28 139.1 734.448 Liver Liver
21 15.2 4.66 34.99 163.0534 Liver Liver
22 8.6 4.4 88.8 390.72 Ascending colon Ascending colon
23 50.8 3.9 34.68 135.252 Liver Liver
24 5.9 4 6.8 27.2 Liver Liver
25 176 3.48 180.3 627.444 Liver Liver
26 15 4 55.1 220.4 Liver Liver
27 26.1 2.55 5.1 13.005 Liver Liver
28 6.2 3.22 23.2 37.03 Liver Liver
29 21.7 2.5 3.5 8.75 Liver Liver

Metabolic volume (cm3) = SUVmean × “PET volume” (cm3)
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3.5 cm3) and whose CEA level were higher than 5 ng/ml
were enrolled. Mean patient age was 55.7 years (range
37–77), and their mean CEA level was 51.81 ± 87.9 ng/ml
(range 5.6–360). Chemotherapy was discontinued at least
3 months before a PET examination.

Of the 29 patients, the histopathologic findings at the
primary operation were moderately differentiated in 20,

well differentiated type in one, and poorly differentiated
type in one. The histopathologic data on the remaining 7
patients were not available.

Forty lesions of 29 patients were evaluated. Based on
lesion site, FDG PET revealed that 19 patients had me-
tastatic liver lesions, 4 patients local recurrence, 4 patients
lung lesions, 3 patients bone lesions, one patient spleen
lesions, and one patient ovary lesions. All recurrent or
metastatic lesions were verified by histological analysis
(22 patients) or by other imaging studies, namely, CT,
MRI, or bone scintigraphy (7 patients).

FDG-PET imaging protocol
Whole body PET scans were performed using an ECAT
EXACT 47 (Siemens-CTI, Knoxville, TN). After fasting
for at least 6 hours, 370–555 MBq 18F-FDG was injected
intravenously. Sixty minutes later, whole body emission
images were obtained for 6 minutes per each bed, and
regional emission images were obtained for 30 minutes in
the 2D mode. Transmission scanning with three 68Ge ring
sources was performed for 2 minutes per each bed in
whole body transmission and for 20 minutes in regional
transmission to correct attenuation.

Images were visually interpreted by consensus be-
tween two experienced nuclear physicians. Standardized
uptake values (SUV) were calculated from the amount of
FDG injected, body weight and target tissue uptake in
regional attenuation corrected images.

“PET volume” and “PET metabolic volume” of tumors
Tumor volume was determined by using a semiautomated
attenuation-corrected FDG PET method. Tumor bound-
aries were outlined with a SUV 2.5 contour using image
analysis software in the regional images (Fig. 1). The
longest diameter of the isocontour plot of the tumor mass
was assessed in coronal, transaxial, and sagittal views,
respectively. The metabolically active “PET volume” of
the tumor was determined by multiplying the 3 axial
diameters. “PET metabolic volume” was obtained by
multiplying “PET volume” by mean tumor SUV.

Statistical analysis
Pearson and Spearman’s rank correlation analyses were
employed since the distribution of CEA data turned out to
be non-parametric. Regression analysis was performed
using the least squares method after estimating the corre-
lation between the CEA level and the “PET volume” or
the “PET metabolic volume.” The linear regression model
obtained was confirmed by ANOVA (analysis of vari-
ance) using the F-test. Finally, the residual analysis was
done to verify the following statistical assumptions of the
normality of residual left over from the regression model
by applying the Anderson-Darling test.

Regression model assumptions:

ε ~ NID (0, σ2)

Fig. 2   CEA (a), PET volume (b), and PET metabolic volume (c)
distribution shown by the 29 patients.
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b
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where ε is the residual (random) error
NID means normally, independently distributed
0 = zero mean of the random error
σ 2 = constant variance of σ 2 at all levels of x

All data were analyzed using Minitab 13.03 (Mintab, Inc.,
PA, USA).

RESULTS

FDG uptake within recurrent lesions was variable (Table
1). The metabolic “PET volume” of tumors ranged from
3.5 to 238.8 cm3 (65.7 ± 52.3 cm3), and the “PET met-
abolic volume” of tumors ranged from 8.7 to 4656.6 cm3

(457.4 ± 845.6 cm3).
The distribution of CEA and PET volume data was non-

parametric (Fig. 2). Pearson and Spearman’s rank corre-
lation analyses showed linear associations between “PET
volume” and serum CEA level (r = 0.793 p < 0.001 and r
= 0.472 p = 0.01, respectively). Further regression analy-
sis using the least squares method resulted in a highly
significant model, namely, PET volume = 41.2 + 0.471・
CEA (t = 6.76, p < 0.0001) (Table 2). This statistical
regression model (Fig. 3a) was confirmed by ANOVA
(F1,28 = 45.68, p < 0.0001) (Table 3) and residual analysis
by Anderson-Darling normality test (p = 0.651) (Fig. 3b).
Based on all the possible residual tests (normality and

a b

Fig. 3   Regression model for CEA vs. “PET volume” (a) and normality test for residual from the
regression model (b). S; standard deviation, R-sq; coefficient of determination, R-sq (adj); R-sq adjusted
by model term. CI; confident interval.

Table 2   Regression analysis of CEA versus tumor “PET
volume”

Predictor Coeff SE Coeff T-value P-value

Constant 41.210 7.030 5.86 0.000
CEA   0.47169 0.06979 6.76 0.000
S = 32.46 R-sq = 62.9% R-sq (adj) = 61.5%

Coeff; coefficient, SE Coeff; standard error of coefficient, S;
standard deviation, R-sq; coefficient of determination, R-sq
(adj); R-sq adjusted by model term

Table 3   ANOVA testing of the regression model of CEA vs.
tumor “PET volume”

Source DF SS MS F-value P-value

Regression 1 48147 48147 45.68 0.000
Residual error 27 28457 1054

    Total 28 76604

DF; degrees of freedom, SS; sum of squares, MS; mean of
squares

Table 4   Regression analysis of CEA against tumor “PET
metabolic volume”

Predictor Coeff SE Coeff T-value P-value

Constant 79.9 121.7 0.66 0.517
CEA 7.287     1.208 6.03 0.000
S = 562.1 R-sq = 57.4% R-sq (adj) = 55.8%

Coeff; coefficient, SE Coeff; standard error of coefficient, S;
standard deviation, R-sq; coefficient of determination, R-sq
(adj); R-sq adjusted by model term

Table 5   ANOVA test for regression model of CEA vs. “PET
metabolic volume” of tumor

     Source DF      SS      MS F-value   P-value

Regression   1 11490789 11490789   36.37  0.000
Residual error 27   8530952     315961

    Total 28 20021740

DF; degrees of freedom, SS; sum of squares, MS; mean of
squares
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other residual plots, data not shown), this regression
model with CEA as a predictor satisfied all statistical
assumptions, and CEA concentration was found to be a
significant predictor of “PET volume” obtained from
FDG PET.

However, no such linear association was found be-
tween the “PET metabolic volume” of a tumor and serum
CEA level considering residual normality test (p < 0.0001)
that violates the statistical assumption of random error
(Fig. 4b), in spite of significant regression and ANOVA
model (Tables 4, 5, and Fig. 4a).

DISCUSSION

The assessment of tumor burden is important in the
management of cancer patients, as prognosis is frequently
related to it. In patients with advanced cancer, total tumor
burden affects the tumor response to therapy, and has
important implications for prognosis.21–23 Moreover, treat-
ment induced reductions of tumor burden have been
shown to be correlated with improvements in survival.
Many methods are available for calculating tumor burden,
such as the pathologic assessment of resected specimens,
serologic markers, and the assessment of tumors by cross-
sectional CT imaging.

Since Gold and Freedman24 first described CEA in
1965, it has proven to be a highly sensitive marker for
detecting recurrence, and is widely used in postoperative
colorectal cancer.3–8 Chung et al.25 found that CEA is ex-
pressed homogeneously in adenocarcinoma of the colon
by quantitative autoradiography. The fact that the con-
centration of CEA is uniformly high in colon carcinoma
suggests that serum CEA concentration implies tumor
volume. However, CEA has several limitations. It is well
known that a normal CEA level does not exclude a tumor

recurrence, and serum CEA is not proven as a recognized
marker for tumor burden in colorectal cancer.

Tumor burden assessment currently depends on cross-
sectional imaging modalities such as CT or MRI. Meas-
ured CT-derived parameters are reproducible in terms of
direct volume measurement and bidimensional measure-
ments.26,27 However, there are pitfalls in the post-treat-
ment setting, as CT alone cannot distinguish between
viable and nonviable mass. In addition, the assessment of
small tumors with diameters similar than the slice thick-
ness limits the usefulness of CT imaging. Unfortunately,
we could not correlate anatomical tumor volume meas-
ured by CT or MRI and serum CEA level, because some
lesions were not covered by CT or MRI.

These limitations of CT can be overcome by using FDG
PET. 18F-FDG PET detects the glycolytic activities of
tumor cells. Higashi et al.28 reported that FDG uptake in
vitro and in vivo is strongly related with the number of
viable cancer cells. A number of investigations have
compared tumor volumes by CT and PET. Zasadny et al.29

and Akhurst et al.30 reported that CT- and PET-derived
volume measures were not identical, but added that PET-
derived volumes are strongly correlated with CT vol-
umes. However, large disparities between the two meth-
ods may occur due to tumor necrosis in previously treated
patients.29

In this study, an SUV contour of 2.5 was used for tumor
volume determination on FDG PET image. It is generally
accepted that FDG PET shows the best sensitivity and
specificity in the detection of tumor using the SUV of 2.5
as the cutoff value.31 We also found that the SUV of 2.5
was a valuable criterion in our PET center, and have used
it as a differential marker between tumor uptake and
nonspecific uptake of FDG.32

The present study shows that the CEA level correlates

Fig. 4   Regression model for CEA vs. “PET metabolic volume” (a) and normality test for residual from
the regression model (b). S; standard deviation, R-sq; coefficient of determination, R-sq (adj); R-sq
adjusted by model term. CI; confident interval.

a b
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with the “PET volume” of a tumor, and not with the “PET
metabolic volume” of a tumor. Although some have
reported that FDG uptake is related with the number of
viable cancer cells, non-neoplastic stroma tissues includ-
ing inflammatory cells and granulation tissue also show
significant FDG uptake in tumor tissue. In particular, high
FDG uptake is observed in activated macrophages and
young granulation tissue.33 These might contribute to the
lack of a correlation between CEA level and “PET meta-
bolic volume” observed in the present study.

Absolute serum CEA levels are insufficient to detect
tumor recurrence. However, serial increases in CEA lev-
els indicate tumor recurrence with high specificity. In
addition, local recurrence is associated with slower CEA
increases than distant metastatic lesions.34 For these
reasons, the correlation between serum CEA and “PET
volume” was only moderate in the present study.

In conclusion, this study demonstrates the existence of
a significant correlation between metabolic volume, as
measured by FDG PET, and the serum CEA level in
postoperative patients with recurrent colorectal cancer. It
indicated that “PET tumor volume” can be used as an
effective marker of tumor burden in recurrent colorectal
cancer.
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