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Human cerebral circulation: positron emission tomography studies
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We reviewed the literature on human cerebral circulation and oxygen metabolism, as measured by
positron emission tomography (PET), with respect to normal values and of regulation of cerebral
circulation. A multicenter study in Japan showed that between-center variations in cerebral blood
flow (CBF), cerebral blood volume (CBV), cerebral oxygen extraction fraction (OEF) and cerebral
metabolic rate of oxygen (CMRO») values were not considerably larger than the corresponding
within-center variations. Overall mean = SD values in cerebral cortical regions of normal human
subjects were as follows: CBF =44.4 = 6.5 m//100 m//min; CBV =3.8 + 0.7 m//100 m/; OEF = 0.44
+0.06; CMRO; = 3.3 + 0.5 m//100 m//min (11 PET centers, 70 subjects). Intrinsic regulation of
cerebral circulation involves several factors. Autoregulation maintains CBF in response to changes
in cerebral perfusion pressure; chemical factors such as P,CO; affect cerebral vascular tone and alter
CBF; changes in neural activity cause changes in cerebral energy metabolism and CBF; neurogenic
control of CBF occurs by sympathetic innervation. Regional differences in vascular response to
changes in P,CO» have been reported, indicating regional differences in cerebral vascular tone.
Relations between CBF and CBV during changes in P,CO, and during changes in neural activity
were in good agreement with Poiseuille’s law. The mechanisms of vascular response to neural
activation and deactivation were independent on those of responses to P,CO» changes. CBV in a
brain region is the sum of three components: arterial, capillary and venous blood volumes. It has
been reported that the arterial blood volume fraction is approximately 30% in humans and that
changes in human CBV during changes in P,CO; are caused by changes in arterial blood volume
without changes in venous blood volume. These findings should be considered in future studies of
the pathophysiology of cerebrovascular diseases.
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INTRODUCTION

MEASUREMENT of cerebral circulation in humans has been
carried out since the 1950s with the use of diffusible
inert-gases,'=3 intravascular X-ray contrast media* and
intravascular radiotracers.”> Measurement of cerebral
circulation in humans by positron emission tomography
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(PET)%!'! and single-photon emission computed tomog-
raphy (SPECT)!>'* is currently performed widely in
investigating the pathophysiology of various brain dis-
eases, particularly occlusive cerebrovascular disease.
Recently, measurement of cerebral circulation by mag-
netic resonance imaging (MRI) with intravascular con-
trast media'>!® has also been attempted. Some indicators
of cerebral circulation, including cerebral blood flow
(CBF), cerebral vascular mean transit time (MTT), and
cerebral blood volume (CBV) can be measured by PET.
The relation between these parameters can be expressed
as MTT = CBV/CBF.”-!! CBF and CBV can be measured
by PET,'72! and MTT and CBV can be measured by MRI
with intravascular contrast media.

Parameters of cerebral oxygen metabolism, including
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cerebral oxygen extraction fraction (OEF) and cerebral
metabolic rate of oxygen (CMRO3), can also be measured
by PET.!822 Because energy metabolism in the brain is
almost aerobic under normal conditions, cerebral oxygen
metabolism can represent cerebral energy metabolism for
maintenance of homeostasis and neural activity.

Intrinsic regulation of cerebral circulation involves
several factors.?3 Autoregulation maintains CBF in re-
sponse to changes in cerebral perfusion pressure (CPP).
Chemical factors such as P,CO; can affect cerebral vascu-
lar tone and alter CBF. Changes in neural activity cause
changes in cerebral energy metabolism and CBF. Neuro-
genic control of CBF by sympathetic innervation has also
been observed. In this review, we analyze PET studies of
human cerebral circulation and oxygen metabolism with
respect to normal values and regulation of cerebral circu-
lation.

NORMAL VALUES FOR CEREBRAL
CIRCULATION AND METABOLISM
AS MEASURED BY PET

CBF, CBV, OEF and CMRO; are generally measured
by PET with 130O-labeled carbon dioxide (C'°0,) or
150-1abeled water (H2!90) as diffusible tracers, 150-
labeled carbon monoxide (C'30) or ’O-labeled oxygen
(1°0,). Several methods for quantification of CBF,
CBYV, OEF and CMRO; by PET have been developed and
used.'$-222427 Although the measured values depend on
quantification methods and other factors such as the
period of radioactive gas inhalation and scanning, which
may differ between PET centers, a multicenter study in
Japan revealed that between-center variation is not con-
siderably larger than within-center variation and that the
overall inter-individual variation in CBF, CBV, OEF and
CMRO:; is acceptably small (within 20%).?® Overall
mean = SD values in cerebral cortical regions of normal
human subjects were as follows: CBF =44.4 + 6.5 ml//
100 m//min; CBV = 3.8 = 0.7 m//100 m/; OEF = 0.44 =
0.06; CMRO> = 3.3 £ 0.5 m//100 m//min (11 PET cen-
ters, 70 subjects). These values were in good agreement
with those reported previously from each single PET
center.?-3!

Blood flow of gray matter and white matter was meas-
ured in the 1960s by a diffusible tracer, '33Xe.3?-3* Fast
and slow components of the clearance slope were consid-
ered to reflect the blood flow of gray and white matter,
respectively. Reported blood flow of gray and white
matter was approximately 80 and 20 m//100 m//min,
respectively. CBF values of cerebral cortical regions
measured by PET have been reported”®-3! and were less
than above value for gray matter, indicating a mixture of
radioactivity concentration between gray and white mat-
ter in a region-of-interest because of limited spatial reso-
lution of PET. It has also been reported that the tissue
mixture of gray and white matter may result in underesti-
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mation of CBF measured by PET with C'30, or H,"°0,
because of non-linearity between brain counts and CBF in
a compartment model analysis,!*3%-30

The normal distribution of CBF in humans has been
investigated by PET with diffusible tracers (C'30O, and
H»'%0) and by SPECT with accumulative tracers (I-123-
labeled N-isopropyl-p-iodoamphetamine (IMP),37-3?
Tc-99m-labeled hexamethylpropyleneamineoxime
(PAO)*%4! and Tc-99m-labeled ethyl cysteinate dimer
(ECD)).*>* An anatomic standardization technique that
transforms brain images of individual subjects into a
standard brain shape and size in three dimensions is used
for intersubject averaging of PET and SPECT images.**
Several methods of anatomic standardization have been
developed and used to build a database of normal CBF in
humans.*>~*? Investigations of the normal distribution of
CBF revealed that blood flow of gray matter is greater
than that of white matter; however, regional distributions
of CBF differed between tracers.**-° For example, CBF
in the occipital cortex measured by SPECT was reported
to be greater with ECD than with PAO. Age-related
changes in the regional distribution of CBF, in which
significant decrease in CBF around the Sylvian fissure
was observed with age, have also been reported.’'3? The
database of normal CBF and the anatomic standardization
techniques have been widely applied to investigate changes
in the regional distribution of CBF in neurologic and
psychiatric diseases. 33
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REGULATION OF CEREBRAL CIRCULATION

Intrinsic regulation of cerebral circulation involves sev-
eral factors?: autoregulation in response to changes in
CPP; chemical control of CBF, e.g., by P,CO»; metabolic
regulation in response to changes in neural activity; and
neurogenic control of CBF by sympathetic innervation.
Here, we discuss these four factors.

CBF autoregulation

CBF autoregulation is the mechanism by which CBF is
maintained during changes in CPP of cerebral arterioles
(Fig. 1). CBF is maintained by autoregulatory vasocon-
striction and vasodilatation of arterioles when CPP is
increased or decreased, respectively.’® When CPP in-
creases beyond the upper limit of autoregulation, CBF
increases.”’-8 This can cause hypertensive encephalopa-
thy, which is characterized by cerebral vasodilatation and
breakdown of the blood-brain barrier.’*-®! When CPP
decreases below the lower limit of autoregulation, CBF
decreases.®? Decreased CPP due to major cerebral arterial
occlusive disease causes autoregulatory vasodilatation to
maintain CBF (stage I hemodynamic change) (Fig. 2).”
Decreased CPP below the lower limit of autoregulation
causes decreased CBF with increased OEF to maintain
CMRO:; (stage 1T hemodynamic change) (Fig. 2).” To
assess stage I hemodynamic compromise as an indicator
of cerebral vascular reserve, the CBF response to aceta-
zolamide, a cerebral vasodilator, is measured by PET and
SPECT. Reduced vasodilatory capacity is a major predic-
tor of stroke recurrence.!®14

Chemical control (P,CO3)
Chemical factors, including P,CO», can affect cerebral
vascular tone and alter CBF. Hypercapnia produces cere-
bral vasodilatation®3-% and increases CBF.%3%7 CO,
diffuses through the blood-brain barrier and induces
extracellular acidosis, which relaxes vascular smooth
muscle.®0-%8-69 Hypercapnia-induced cerebral vaso-
dilatation is a direct effect of H* on vascular smooth
muscle’®73; the blood-brain barrier itself is impermeable
to H*. Conversely, hypocapnia decreases CBF.93:67.74
Thus, the extracellular pH of vascular smooth muscle is
affected by P,CO,.7* It has been reported that hypercapnia
increases CBF by approximately 6% per mm Hg change
in P.CO3, and hypocapnia decreases CBF by approxi-
mately 3% per mm Hg change in P,C0,.%7-7> Because
responsiveness to vasodilating substances with insufficient
CPP is reduced by autoregulatory vasodilatation,!%-76
hypercapnia can be used to estimate cerebral perfusion
reserve in occlusive cerebrovascular disease.”’~7°
Recently, regional differences in vascular response to
changes in P,CO; have been investigated with the use of
an anatomic standardization technique.®’ A large capacity
for vasodilatation was observed in the pons, cerebellum,
thalamus and putamen, whereas a large capacity for
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CBV = ¢ CBF%®

{c: constant}

cBv
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Fig. 3 Poiseuille’s law describing the relation between CBF and
CBV.

vasoconstriction was observed in the temporal, temporooc-
cipital and occipital cortices. In the assessment of cerebral
perfusion reserve, these regional differences should be
considered. Vascular responses to changes in P,CO» have
been reported to be decreased significantly with normal
aging in humans, indicating progression of sclerotic
changes in the cerebral perforating and medullary arter-
ies.808! Decreased vascular response to hypercapnia with
age has also been observed in rats.??3 Because cerebral
vascular responsiveness to changes in P,CO> reflects the
range of cerebral autoregulation, this range may narrow
with aging.

An increase in CBF during hypercapnia with no change
in the density of perfused capillaries has been observed at
the microvascular level in animals.?* Change in capillary
diameter during hypercapnia and hypocapnia has also
been observed in animals.® The relation between CBF
and CBYV (including arterial, capillary and venous blood
volume) during changes in P.CO; has been investigated in
animals®¢-3° and humans.”® Results showed that the in-
crease in CBV during hypercapnia is less than that in CBF
and that the degree of decrease in CBV during hypocapnia
is less than that in CBF. The relation between CBF and
CBYV during changes in P,CO; was determined in humans
as follows: CBV = 1.09CBF*? %0 According to Poiseuille’s
law, vascular resistance decreases by a power of 4 of the
vessel diameter. Blood volume increases proportionally
to the square of the diameter, yielding the relation: CBV
= ¢ CBF% (c: constant) (Fig. 3), which is in good agree-
ment with the relation during changes in P,CO».

Metabolic regulation due to neural activity

Neural activation increases regional cerebral energy me-
tabolism and CBF. PET studies in humans have shown
that regional CBF and CMRO: increase during neural
activation. The increase in CBF is greater than that in
CMRO: and results in a decrease in OEF, which corre-
sponds to the ratio of CMRO; and CBF.?!-%* This discrep-
ancy between increases in CBF and CMRO; during
neural activation causes an increase in venous blood
oxygenation and, therefore, a decrease in venous blood
paramagnetic deoxyhemoglobin concentration. This
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Fig.5 Changes in CBF during changes in P,CO, under activa-
tion, baseline and deactivation conditions.

decrease can be detected by blood oxygenation level-de-
pendent (BOLD) contrast by means of functional mag-
netic resonance imaging (fMRI),”>® which is used widely
to study brain activation.”” A significant negative correla-
tion between changes in OEF and BOLD signal during
neural activation has been reported in human PET stud-
ies.”* This supports the assumption on which BOLD
contrast studies are based: that the discrepancy between
increases in CBF and CMRO> during neural activation
causes an increase in venous blood oxygenation (Fig. 4).%8

PET studies of the hemodynamics of crossed cerebellar
diaschisis (CCD), which is caused by contralateral sup-
ratentorial lesions, have shown a reduction in CBF and
CMRO,.”-193 Because no differences in vascular re-
sponse to hypercapnia, hypocapnia or acetazolamide stress
were observed between the CCD side and the unaffected
side of the cerebellum,!93-195 the mechanism of CCD can
be considered secondary hypoperfusion due to neural
deactivation. The degree of difference between CMRO>
values on the CCD side and the unaffected side was less
than that between the CBF values, resulting in significantly
higher OEF on the CCD side (Fig. 4).'9%193 Increased
OEF with decreased CBV in the CCD side indicates that
neural deactivation primarily causes vasoconstriction
rather than a reduction in oxygen metabolism.!?3

The relation between CBF and CBV during changes
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in neural activity has been investigated in animals and
humans. The hemodynamic mechanism of increased
CBF during neural activation has been investigated in
animals at the microvascular level by laser-Doppler
flowmetry.!0%-198 Two hypotheses exist to explain the
mechanism of hemodynamic regulation.'” One is that
change in capillary blood volume changes CBF, and the
other is that change in capillary flow velocity changes
CBF. One animal study showed that the increase in CBF
was greater than the increase in pial arteriolar diameter
during neural activation.'% Early blood volume increase
during neural activation, indicating active neurovascular
regulation of blood volume in the capillary bed, has also
been observed in animals.'”” Mandeville et al. observed a
mismatch between the responses of relative CBV meas-
ured by MRI with a paramagnetic contrast agent and
relative CBF measured by laser-Doppler flowmetry in
rats during somatosensory stimulation.''” In humans,
PET and MRI studies of cerebral hemodynamics indi-
cate that CBF and CBV increase during neural activa-
tion.!"!-114 A PET study showed that the increase in CBF
was greater than that in CBV during visual stimulation of
8-Hz photic flickers, resulting in a decrease in cerebral
vascular MTT, although the increases in CBF and CBV
were almost identical during visual stimulation of 2-
Hz flickers.!'* This indicates that when the increase in
CBF is great, it is caused primarily by an increase in vas-
cular blood velocity rather than an increase in CBV.
The relation between CBF and CBV during neural activa-
tion was CBV = 0.88CBF%3, in good agreement with
Poiseuille’s law.!''* As mentioned above, CCD can be
considered to represent neural deactivation. The degree of
difference between CBF values on the CCD and unaf-
fected sides of the cerebellum has been reported to be
similar to that between CBV values on the two sides; this
suggests that MTT, i.e., vascular blood velocity, does not
change during neural deactivation.'®® The relation be-
tween CBF and CBV of the CCD and unaffected sides was
expressed as CBV = 0.29CBF%%, which is also in good
agreement with Poiseuille’s law,!03

It has been reported that tissues with increased CBF due
to neural activation show the same vascular response to
changes in P,CO; as that seen for resting CBF.”> Inao et
al. reported that, despite a decreased vascular response to
acetazolamide stress because of a steno-occlusive lesion
of a major cerebral artery, normal CBF response to neural
activation was observed.'!> These findings indicate that
the mechanism of vascular response to neural activation
is independent of that to either P,CO, change or acetazola-
mide stress (Fig. 5). No differences in vascular response
to hypercapnia, hypocapnia or acetazolamide stress were
observed between the CCD side and the unaffected side of
the cerebellum,!%3-19 indicating that the mechanism of
vascular response to neural deactivation is also inde-
pendent of that to either P,CO» change or acetazolamide
stress (Fig. 5).
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Neurogenic control of CBF by sympathetic innervation
Sympathetic innervation of the intracranial arteries
contributes to the regulation of cerebral perfusion.!'!6-!17
Sympathetic stimulation has been reported to reduce CBF
in cats''® and dogs,'"” whereas no change has been ob-
served in baboons.'?’ Parasympathetic stimulation has
been reported to increase CBF in cats.!?! Increased CBF
after stellate ganglion block has also been observed in
humans by SPECT with *™Tc-labeled PAO.!?? Previ-
ously, we measured changes in CBF and myocardial
blood flow (MBF) in relation to mental stress in humans
by dual-PET.'?> MBF, blood pressure, heart rate and
plasma concentrations of adrenaline and noradrenaline
increased significantly during mental stress. Although
these sympathetic responses were observed, no signifi-
cant change in global CBF was observed. In general,
neurogenically induced changes in CBF due to sympa-
thetic innervation are considered to be very small.?

CEREBRAL VASCULAR COMPONENT

The CBV in a brain region is the sum of three components:
arterial, capillary and venous blood volumes.??!?4125 The
arterial blood volume fraction for systemic circulation is
reported to be 20-30%.'2° The radioactivity concentra-
tion in arterial blood can be differentiated on a regional
time-activity curve of H,'O by kinetic analysis. There-
fore, the arterial blood volume in the brain can be deter-
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mined.'? A PET study showed the arterial blood volume
fraction to be approximately 30% in humans.'?” The
capillary blood volume is considered to be negligibly
small??; however, capillary blood volume in the living
human brain is unknown. The fraction of capillary blood
volume per total volume of brain tissue was reported to be
approximately 2% in cats.'?8

Changes in arterial blood volume and CBV during
hypercapnia and hypocapnia were investigated by PET
and MRI. Results by PET showed that changes in human
CBYV during hypercapnia and hypocapnia are induced by
changes in arterial blood volume without changes in
venous blood volume (Fig. 6).!2° Increases in blood
volume and vessel diameter in arteries but not veins
during hypercapnia have also been observed in the rat
brain by '°F nuclear magnetic resonance.?® CO; diffuses
through the blood-brain barrier and induces a change in
extracellular pH.%%%%:% Changes in extracellular pH then
induce changes in the diameter of arterioles as a direct
effect of H* on vascular smooth muscle.”®73 Because
arterial blood volume measured by PET and MRI includes
the blood volume of cerebral arterioles, the findings
obtained from PET and MRI studies correspond well with
physiologic observations. In addition, increased arterial
blood volume during acetazolamide stress has also been
observed in the human brain.'3°

CEREBRAL VASCULAR TONE

Normal human CBF under resting conditions has been
investigated by PET,?-3! and its coefficient of variation
has been reported to be approximately 20%. Interindividual
variation of cerebral vascular tone may contribute such
interindividual variation in CBF. Several determinants of
cerebral vascular tone, including sympathetic innervation
of intracranial arterioles,'3! nitric oxide (NO)'3? and po-
tassium (K*) channels,'3? have been proposed.

We have investigated regional differences in cerebral
vascular tone by assessing vascular responses to changes
in P,CO, by PET.%" In the temporal, temporooccipital and
occipital cortices, little capacity for vasodilatation and a
large capacity for vasoconstriction were observed, which
suggests that the cerebral vascular tone at rest tends
toward vasodilatation in these regions (Fig. 7). The ca-
pacity for neocortical vasodilatation in hypercapnia was
greatest in the frontal cortex, suggesting that cerebral
vascular tone tends toward vasoconstriction in this neo-
cortical region (Fig. 7). Such regional differences in
cerebral vascular tone were also related to regional differ-
ences in cerebral vascular MTT; MTT of neocortical
regions was shortest in the frontal cortex and longest in the
temporooccipital and occipital cortices.'3* Regional het-
erogeneity of sympathetic innervation of intracranial ar-
terioles has been reported. For example, the occipital lobe
shows less sympathetic innervation than other brain
regions show.!3! Less sympathetic innervation in the
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occipital lobe may be related to the tendency of the cere-
bral vascular tone at rest toward vasodilatation. In addi-
tion, it has been reported that sympathetic innervation of
intracranial arterioles acts to protect against acute arteri-
al hypertension.'3> Less sympathetic innervation in the
occipital lobe may also be related to hypertensive enceph-
alopathy, which is characterized by cerebral vasodilata-
tion and breakdown of the blood-brain barrier and is often
seen as brain edema in the occipital and/or temporooc-
cipital cortices.0-0!

MTT in the cerebellum, thalamus and putamen was
shorter than that in all other regions,'3* indicating that
CPP was greatest in these regions because MTT is in-
versely proportional to CPP.%!! It has been reported that
these regions have a large capacity for vasodilatation in
response to hypercapnia, suggesting that cerebral vascu-
lar tone in these regions tends toward vasoconstriction.®”
This tendency may also be related to high CPP in these
regions. In addition, the cerebellum, thalamus and puta-
men are common sites of hypertensive intracerebral hem-
orrhage.'3 The cause of the regional differences in CPP
is unknown but may be related to anatomical variations in
cerebral vasculature.

CONCLUSION

We reviewed the literature on human cerebral circulation
and oxygen metabolism measured by PET with respect to
normal values and regulation of cerebral circulation. A
multicenter study in Japan revealed normal values of
CBF, CBV, OEF and CMRO:> with acceptably small
inter-individual variation overall. Several factors are
involved in intrinsic regulation of cerebral circulation:
autoregulation in response to changes in CPP; chemical
control of CBF, e.g., P.CO,; metabolic regulation due to
changes in neural activity; and neurogenic control of CBF
by sympathetic innervation. Regional differences in vas-
cular response to changes in P,CO; have been reported,
thus indicating regional differences in cerebral vascular
tone. Relations between CBF and CBV during changes in
P.CO» and during changes in neural activity were in good
agreement with Poiseuille’s law. The mechanisms of
vascular response to neural activation and deactivation
were independent of those of responses to P,CO, changes.
CBV in a brain region is the sum of three components:
arterial, capillary and venous blood volumes. It has been
reported that the arterial blood volume fraction is approxi-
mately 30% in humans and that changes in human CBV
during changes in P,CO> are caused by changes in arterial
blood volume without changes in venous blood volume.
These findings should be considered in future studies the
pathophysiology of cerebrovascular diseases.
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