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INTRODUCTION

AUTOMATIC IMAGE REGISTRATION TECHNIQUE is becoming an
increasingly important clinical tool in single-photon emis-
sion computed tomography (SPECT) and positron emis-

sion tomography (PET). Magnetic resonance imaging
(MRI) and X-ray computed tomography (CT) provide
anatomical information mostly without functional infor-
mation. On the other hand, SPECT and PET provide
functional information, but do not delineate anatomical
information. After registration, these two modalities are
fused into one image to obtain functional information
localized over the anatomical images.1–3 That registration
technique has been applied toward attenuation correction
in SPECT/PET using CT/MRI images that were geo-
metrically aligned to the SPECT/PET images.4–6

Accuracy and reproducibility of co-registration techniques based
on mutual information and normalized mutual information

for MRI and SPECT brain images

Takashi YOKOI,*1 Tsutomu SOMA,*2,*3 Hiroyuki SHINOHARA*4 and Hiroshi MATSUDA*5

*1Image Processing Division, Bioimaging Laboratory, Inc.
*2Department of Medical Engineering, Division of Applied Health Sciences, Osaka University Medical School

*3Clinical Application Technology Group, Daiichi Radioisotope Laboratories
*4Department of Radiological Sciences, Tokyo Metropolitan University of Health Sciences

*5Department of Nuclear Medicine, Saitama Medical School Hospital

We implemented a 3D co-registration technique based on mutual information (MI) including 2D
image matching as a coarse pre-registration. The 2D coarse pre-registration was performed in the
transverse, sagittal and coronal planes sequentially, and all six parameters were then optimized as
fine registration. Normalized mutual information (NMI) was also examined as another entropy-
based measure that was invariant to the overlapped area of two images. In order to compare accuracy
and precision of the present method with a conventional two-level multiresolution approach,
simulation was performed by 100 trials with the random initial mismatch of ±10° and ±17.92 mm
(Type-I) and ±20° and ±40.32 mm (Type-II). For Type-I, no significant differences were found
between registration errors of the multiresolution approach and the present method with the MI
criterion. No biases were observed (≤0.13° and ≤0.57 mm for the multiresolution approach; ≤0.12°
and ≤0.57 mm for the present method) and the SDs were very small (≤0.18° and ≤0.12 mm for the
multiresolution approach; ≤0.11° and ≤0.11 mm for the present method). For Type-II, SDs for the
multiresolution approach (≤1.8° and ≤0.88 mm) were markedly larger than those for the present
method (≤0.64° and ≤0.20 mm) with MI. Success rate for the present method was 99.9%, which was
higher than 97.6% for the multiresolution approach. Simulation also revealed that MI and NMI
performance were almost equivalent. The choice of optimization strategy more affected accuracy
and reproducibility than the choice of the registration criterion (MI or NMI) in our simulation
condition. The present method is sufficiently accurate and reproducible for MRI-SPECT registra-
tion in clinical use.

Key words:   image registration, mutual information, normalized mutual information, entropy,
single photon emission computed tomography (SPECT)



Annals of Nuclear Medicine660 Takashi Yokoi, Tsutomu Soma, Hiroyuki Shinohara and Hiroshi Matsuda

Many approaches exist for 3-dimensional (3D)
multimodal medical image registration. Most approaches
are based on the mathematical framework of optimizing
an intensity-based cost function. For example, Woods et
al.7 have proposed a method (AIR, automatic image
registration) based on the minimization of the weighted
sum of the standard deviation of intensities of PET voxels
corresponding to narrow gray scale ranges of MRI-voxel
intensities. Ardekani et al.8 proposed a similar registration
technique, called AMIR (automatic medical image regis-
tration), which uses the K-mean clustering algorithm to
segment the MRI images into eight ranges of intensity and
applied connected component analysis. Two images were
then aligned by minimizing the variance of the PET/
SPECT intensity within the segments. Performance com-
parisons of these approaches have been reported.9–11

Recently, mutual information (MI) as the registration
criterion was introduced independently by both Collignon
et al.12 and Viola and Wells,13 and this idea was expanded
by Maes et al.14 AIR and AMIR are designed specifically
for functional to anatomical image registration, whereas
the MI is more general. The MI-based registration tech-
nique requires neither segmentation nor any ad-hoc as-
sumptions about the properties of the imaging modalities.
Validation of this algorithm has been reported for MRI-
CT,14,15 MRI-PET,14,16 CT-transmission CT17 and MRI-
SPECT18,19 studies. However, Studholme et al.20 pointed
out that MI is sensitive to the overlap area between the two
images. They proposed normalized mutual information
(NMI) as an alternative entropy-based measure that is
invariant to the overlapped region of the two images. The
NMI has also been used in a large number of studies.21–23

Many issues can affect MI- and NMI-based registration
technique performance, including the optimization algo-
rithm, number of bins of joint histogram, interpolation
method, multiresolution and subsampling strategy. The
multiresolution approach and the subsampling approach

can improve the registration speed. In these techniques,
registration is performed first at lower image resolution.
Subsequently, the registration proceeds at higher image
resolution. These approaches not only improve the com-
putational efficiency, they also avoid trapping to local
optima. In this study, we propose an alternative approach
of 3D MI- and NMI-based registration technique that
includes a 2D image matching as a coarse pre-registration
with relatively few parameters. The present method was
compared with the conventional coarse-to-fine multi-
resolution approach; its accuracy and reproducibility were
evaluated with simulation data and clinical data sets of
MRI and 99mTc-ethyl cysteinate dimmer (ECD) SPECT
images.

METHODS AND MATERIALS

Mutual information and normalized mutual information
Mutual information MI(A,B) is an index of how much
information one random variable (A) tells about another
(B); it is expressed as MI(A,B) = H(A) + H(B) − H(A,B),
where H(A) and H(B) are the Shannon’s entropy24 of A
and B, and H(A,B) is the joint entropy of A and B. H(A),
H(B) and H(A,B) can be computed from the 2D histogram
of the intensity or gray values of two images.14

Normalized mutual information (NMI)20 has also been
proposed as another entropy-based measure that is invari-
ant to the overlapped region of two images; it is defined as
NMI(A,B) = (H(A) + H(B))/H(A,B). This study examines
the two similarity measures for the MRI-SPECT image
registration. The procedure of image registration based on
MI and NMI is described in the Appendix.

Implementation and optimization algorithm
The algorithm is assumed to be a rigid-body transforma-
tion involving six parameters that specify x-, y-, and z-axis
rotations (dθx, dθy, dθz) and translations (dx, dy, dz). The

Table 1   List of image file parameters

Subject No. Modality Dimension Voxel size (mm)

1 Normal MRI-T1 256 × 256 × 59 1.23 × 1.23 × 2.10
ECD-SPECT 128 × 128 × 92 2.46 × 2.46 × 2.46

2 Normal MRI-T1 256 × 256 × 61 1.23 × 1.23 × 2.10
ECD-SPECT 128 × 128 × 73 2.46 × 2.46 × 2.46

3 Ictal/Interictal MRI-T1 256 × 256 × 57 1.23 × 1.23 × 2.24
ECD-SPECT 128 × 128 × 51 2.46 × 2.46 × 2.46
ECD-SPECT 128 × 128 × 54 2.46 × 2.46 × 2.46

4 Normal MRI-T1 256 × 256 × 60 1.23 × 1.23 × 2.46
ECD-SPECT 128 × 128 × 86 2.46 × 2.46 × 2.46

5 Normal MRI-T1 256 × 256 × 52 1.23 × 1.23 × 2.46
ECD-SPECT 128 × 128 × 80 2.46 × 2.46 × 2.46

6 Normal MRI-T1 256 × 256 × 52 1.23 × 1.23 × 2.75
ECD-SPECT 128 × 128 × 59 2.46 × 2.46 × 2.46

7 Normal MRI-T1 256 × 256 × 41 1.23 × 1.23 × 2.75
ECD-SPECT 128 × 128 × 51 2.46 × 2.46 × 2.46
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parameters are optimized such that the MI(A,T(B)) or
NMI(A,T(B)) is maximized, where A and B is the reference
(MRI) and the floating (SPECT) volume, respectively,
and T is the transformation matrix. Trilinear interpolation
and inverse mapping scheme is used to compute the voxel
value in the floating volume to the corresponding voxel
value in the reference volume. Gauss smoothing (FWHM
= 8–10 mm) is applied to remove statistical noise on the
SPECT images. Binning of the 2D histogram is per-
formed on the two images as a preprocessing step. Linear
binning employs a simple rescaling of the gray-scale
range into the bin size of 64.

The Nelder-Mead Simplex algorithm25,26 is used to
search for the optimal parameters. This study examines
two different optimization approaches. First, the two-
level multiresolution approach14,16,18 is examined as the
standard registration technique to optimize the six param-
eters simultaneously. Resolution is changed from 1/2 to
the original size. Secondly, we implement an alternative
approach involving 2D image matching as a coarse pre-
registration in the transverse plane (dθz, dx, dy), sagittal
plane (dθx, dy, dz) and the coronal plane (dθy, dx, dz); all
six parameters are then optimized as the fine registration.
Coarse 2D pre-registration is performed using a halved
resolution. Figure 1 illustrates the 2D pre-registration
strategy in the present method. In the Simplex algorithm,
the initial vector of simplex in parameter space is used
with offsets of +5.0° and +5.0 pixels for the multiresolution
approach. In the present method, these values are ±5.0°
and +5.0 pixels for the pre-registration step and +1.5° and
+1.0 pixels for the fine registration. Tolerance for the
termination condition is set to be 0.1° and 0.1 pixels for
both methods.

Simulation data
Our simulation was based on realistic SPECT data from
T1-weighted MRI images. The simulation used seven
MRI data. Table 1 summarizes the MRI image param-
eters. They are described later in the section regarding the
clinical study. Each MRI image was segmented into gray
matter (GM), white matter (WM), and cerebrospinal fluid
(CSF) using SPM9927 software. The Renkin-Crone equa-
tion28,29 provided the GM/WM ratio to be approximately
2.33 with corresponding cerebral blood flow (80 ml/100
g/min for GM and 20 ml/100 g/min for WM) and the
permeability-surface area (PS) product of ECD (PS = 66
ml/100 g/min).30 Consequently, the radioactivity ratio of
GM, WM, and CSF was assumed to be 2.4 : 1.0 : 0.1 to
simulate the brain perfusion pattern of ECD. In this
simulation, we considered two perfusion models: a nor-
mal perfusion model (NRM) and a pathological perfusion
model with frontal lobe defect (FLD). In the FLD model,
the radioactivity of the defect region on GM was reduced
to 60% of the normal value.

All perfusion images were resliced into 128 × 128 × 128
with a voxel size of 2.24 × 2.24 × 2.24 mm. They were then

Fig. 1   Diagram of the 2D pre-registration strategy in the present
method. The 2D image matching as a coarse pre-registration
with a smaller number of parameters is performed in the trans-
verse plane (dθz, dx, dy), sagittal plane (dθx, dy, dz) and coronal
plane (dθy, dx, dz); all six parameters were then optimized as fine
registration. Coarse pre-registration was performed with a half
matrix size by voxel averaging to increase the computational
efficiency.

Fig. 2   Typical simulation data. MRI-T1 image and simulated
SPECT images of a normal perfusion model (NRM) and a
pathological perfusion model with frontal lobe defect (FLD).
SPECT images were smoothed using a Gaussian filter with 8-
mm FWHM to remove statistical noise.

reprojected to generate the SPECT projection data with
2D Gaussian blurring (FWHM = 8 mm) and statistical
noise. The effects of photon attenuation and scatter were
not included in this simulation. The projection data were
reconstructed by the ordered subsets-expectation maxi-
mization (OSEM) algorithm31 (iteration = 3, subset size =
20). Figure 2 shows a typical simulation data set.

Evaluation of accuracy and precision using simulation
data
The accuracy and precision of the algorithms was
evaluated using simulation data. The simulation was
performed using 100 independent trials with two types of
initial mismatches which were randomly transformed
within ±10° for rotations and ±17.92 mm (±8 voxel) for
translations (refer to Type-I) and ±20° and ±40.32 mm
(±18 voxel) (refer to Type-II). Registration was per-
formed with the MRI-NRM SPECT and the MRI-FLD
SPECT data sets. Accuracy and reproducibility of algo-
rithms was evaluated by the mean and standard deviation
(SD) of differences between true and estimated transfor-
mation parameters. Wong et al.32 reported that a trained
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clinician can detect differences from the registration pa-
rameter of 4° in the x- and y-rotation angles, 2° in the z-
rotation, 2 mm in the x- and y-translations, and 3 mm in the
z-translation. Therefore, the registration was treated in
this study as a success when all misregistration param-
eters were within the detection borderline. All data pro-
cessing was performed on a PC (Pentium-4, 2.8 GHz, 512
MB memory).

Clinical application
The present methods based on MI and NMI were applied
to the clinical data. The SPECT images were smoothed
using a Gaussian filter (FWHM = 10 mm); the image
count was truncated with a lower threshold of 5% of the

maximum count.19

Seven human data of T1-weighted MRI and ECD-
SPECT were used to evaluate the registration algorithm
performance. One was an ictal/interictal SPECT study.
Therefore, we analyzed eight MRI and SPECT data sets
in all. The MRI images were acquired using gradient-echo
sequence (echo time/repetition time, 4.4/11/4; flip angle,
15°) with a 1.0 T MRI scanner (Magnetom Impact Exper;
Siemens Medical Solutions, Siemens AG). The SPECT
measurement was performed using a triple-head gamma
camera (MULTISPECT 3, Siemens Medical Solutions,
Siemens AG) equipped with a high-resolution fan beam
collimator. The acquisition matrix size was 128 × 128,
with a pixel size of 2.46 × 2.46 mm. The number of

Table 2   Mean errors of MI-based registration in MRI-NRM SPECT simulation

Algorithm dθx (deg) dθy (deg) dθz (deg) dx (mm) dy (mm) dz (mm) Success rate (%) MI

Mismatch: Type-Ia)

Multiresolution approach 0.13 ± 0.15 0.03 ± 0.15 −0.04 ± 0.18 0.08 ± 0.12 −0.49 ± 0.12 0.57 ± 0.11 100 0.811
(−0.37/0.86) (−0.49/0.65) (−0.80/0.72) (−0.31/0.60) (−0.95/0.09) (0.13/1.03)

Present method 0.12 ± 0.10 0.03 ± 0.10 −0.07 ± 0.11 0.09 ± 0.10 −0.49 ± 0.11 0.57 ± 0.10 100 0.811
(−0.31/0.75) (−0.29/0.68) (−0.62/0.45) (−0.29/0.47) (−0.97/0.11) (0.10/0.97)

Mismatch: Type-IIb)

Multiresolution approach 0.15 ± 1.11 0.21 ± 1.80 0.06 ± 1.59 0.02 ± 0.88 −0.48 ± 0.41 0.51 ± 0.35 97.6 0.795
(−16.6/14.6) (−12.5/22.0) (−8.03/23.4) (−12.1/3.04) (−5.92/4.87) (−3.79/4.52)

Present method 0.12 ± 0.17 0.06 ± 0.64 −0.07 ± 0.13 0.10 ± 0.20 −0.47 ± 0.18 0.52 ± 0.19 99.9 0.802
(−0.74/2.46) (−1.38/16.2) (−0.84/0.54) (−2.23/0.60) (−1.13/0.32) (−1.72/1.11)

a)  initial mismatch of ±10° for rotations and ±17.92 mm for translations
b)  initial mismatch of ±20° for rotations and ±40.32 mm for translations
Values in parentheses represent the range of maximum possible error in each parameter

Table 4   Mean errors of MI-based registration in MRI-FLD SPECT simulation

Algorithm dθx (deg) dθy (deg) dθz (deg) dx (mm) dy (mm) dz (mm) Success rate (%) MI

Present method 0.17 ± 0.12 0.15 ± 0.11  −0.33 ± 0.12 0.29 ± 0.12 −0.72 ± 0.14 0.67 ± 0.11  100 0.796
(−0.49/0.88) (−0.22/0.71) (−0.94/0.26) (−0.16/0.81) (−1.26/0.03) (0.15/1.07)

Values in parentheses represent the range of maximum possible error in each parameter

Table 3   Mean errors of NMI-based registration in MRI-NRM SPECT simulation

Algorithm dθx (deg) dθy (deg) dθz (deg) dx (mm) dy (mm) dz (mm) Success rate (%) NMI

Mismatch: Type-Ia)

Multiresolution approach 0.15 ± 0.17 0.04 ± 0.15 −0.03 ± 0.18 0.10 ± 0.13 −0.40 ± 0.12 0.63 ± 0.11 100 1.079
(−1.11/0.78) (−0.79/0.72) (−0.83/0.59) (−0.35/0.69) (−0.93/0.12) (−0.10/1.02)

Present method  0.12 ± 0.10 0.03 ± 0.10 −0.07 ± 0.10 0.09 ± 0.09 −0.49 ± 0.11 0.57 ± 0.10 100 1.080
(−0.34/0.74) (−0.24/0.55) (−0.62/0.56) (−0.26/0.50) (−0.97/0.09) (0.11/0.96)

Mismatch: Type-IIb)

Multiresolution approach 0.20 ± 1.48 0.25 ± 2.04 0.14 ± 1.77 −0.00 ± 0.94 −0.18 ± 0.53 0.21 ± 0.36 97.4 1.078
(−16.5/15.2) (−8.93/22.5) (−5.72/18.6) (−4.56/0.99) (−1.99/2.23) (−1.12/1.50)

Present method 0.13 ± 0.15 0.04 ± 0.17 −0.06 ± 0.15 0.04 ± 0.18 −0.19 ± 0.18 0.21 ± 0.17 100 1.080
(−0.52/0.89) (−1.82/0.78) (−0.73/1.42) (−0.27/0.25) (−0.45/0.12) (−0.09/0.43)

a)  initial mismatch of ±10° for rotations and ±17.92 mm for translations
b)  initial mismatch of ±20° for rotations and ±40.32 mm for translations
Values in parentheses represent the range of maximum possible error in each parameter
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projection angles was 72; the acquisition time was 50 s/
angle. Image reconstruction was performed using the
filtered backprojection algorithm with the Hanning filter
(0.7 cycles/cm). Chang’s attenuation correction was per-
formed using uniform µ-value (0.09 cm−1). Table 1 sum-
marizes the parameters of each image.

RESULTS

Validation of the simulated SPECT data
We examined the MI-based registration technique using

MRI and NRM-SPECT images with no mismatch in
advance to confirm the validity of the simulated SPECT
data. The average of biases and SD (n = 7) in the multi-
resolution approach were 0.07 ± 0.13°, 0.09 ± 0.07°, 0.00
± 0.07° for x-, y- and z-rotations and 0.03 ± 0.05 mm,
−0.30 ± 0.21 mm, 0.64 ± 0.14 mm for x-, y- and z-trans-
lations, respectively. Those in the present method were
0.17 ± 0.23°, −0.04 ± 0.19°, −0.07 ± 0.18° for x-, y- and z-
rotations and 0.06 ± 0.07 mm, −0.36 ± 0.19 mm, 0.58 ±
0.14 mm for x-, y- and z-translations, respectively. Small
offsets were observed in the y- and z-axis translation.

Fig. 4   Transverse images of MRI (upper) and fused images of the MRI and ECD-SPECT (lower) using
the MI-based registration technique.

Fig. 3   Comparison of estimated rotational parameters (left) and translational parameters (right) with
the MI- and NMI-based registration for all clinical data sets (n = 8).
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Accuracy and precision for MI-based registration tech-
nique
Table 2 shows mean errors of the MI-based registration
technique in MRI-NRM SPECT simulation. The success
rate of registration, mean MI value and the range of
maximum possible error are also presented. In the case of
Type-I (±10° and ±17.92 mm), no significant differences
were found between the results of the multiresolution
approach and the present method. No biases were ob-
served in either method (≤0.13° and ≤0.57 mm for the
multiresolution approach; ≤0.12° and ≤0.57 mm for the
present method); the SDs were very small (≤0.18° and
≤0.12 mm for the multiresolution approach; ≤0.11° and
≤0.11 mm for the present method). The range of maxi-
mum possible error was within about ±1.0° and ±1.0 mm
in both methods. All simulations (700 trials) were suc-
cessful. The average run times for the multiresolution
approach and the present method were 25 ± 6 and 31 ± 4
s, respectively.

In the case of Type-II (±20° and ±40.32 mm), the
present method yielded better results in terms of accuracy
and precision in comparison with the multiresolution
approach. The SDs for the multiresolution approach
(≤1.80° and ≤0.88 mm) were markedly larger than those
for the present method (≤0.64° and ≤0.20 mm). The
success rate for the present method was 99.9% (one of
700 trials failed) which was higher than 97.6% (17 of 700
trials failed) for the multiresolution approach. With the
multiresolution approach, the maximum possible errors
ranged from −16.6° to 23.4° for rotations and from −12.1
mm to 4.87 mm for translations. With the present method,
they ranged from −1.38° to 16.2° for rotations and from
−2.23 mm to 1.11 mm for translations. The 2D-coarse pre-
registration strategy provided a large capture range and
was more robust with respect to the large initial mismatch.

Accuracy and precision for NMI-based registration tech-
nique
Table 3 shows mean errors of the NMI-based registration
technique in the MRI-NRM SPECT simulation. Overall,
the NMI showed the same tendency as the MI results.
Comparison of the accuracy and precision for the
multiresolution approach and the present method using
Type-I showed no significant differences in any param-
eters. All simulations were successful in both methods.

However, in the case of Type-II, the present method
exhibited better accuracy and precision than the multi-
resolution approach. The SDs for the multiresolution
approach (≤2.04° and ≤0.94 mm) were markedly larger
than those for the present method (≤0.17° and ≤0.18 mm).
All simulations were successful with the present method,
whereas the success rate was 97.4% (18 of 700 trials
failed) with the multiresolution approach. The NMI accu-
racy and precision were almost equivalent to those of MI
in our simulation condition. No differences were found
between the average run times of NMI and MI.

The effect of defect region
Table 4 shows mean errors of the present method based on
the MI criterion in the MRI-FLD SPECT simulation using
Type-I. We found only minor differences between the
registration results of the MRI-NRM SPECT simulation
(Table 2) and the MRI-FLD SPECT simulation (Table 4).
The biases were very small (≤0.33° and ≤0.72 mm), and
the SDs for the present method were within 0.12° and 0.14
mm. The simulation revealed that frontal lobe defect has
little influence on the registration accuracy and reproduc-
ibility.

Results of clinical application
Figure 3 shows a comparison of estimated registration
parameters for rotation and translation using the MI- and
NMI-based registration algorithms for all subjects. The
rotational parameters ranged from −5° to 12°; the transla-
tional parameter ranged from −19 to 7 mm. No significant
differences were shown between the two registration
methods (yNMI = 0.988xMI − 0.087, r = 0.996 for rotations;
yNMI = 0.999xMI − 0.020, r = 0.999 for translations). Figure
4 shows the MRI images and fused images of MRI-T1 and
ECD-SPECT. The display shows good quality of the
match for internal brain structures and brain surfaces. The
method registered the SPECT and the MRI for all subjects
with an accuracy that we could not fault by visual inspec-
tion.

Fig. 5   The procedure of image registration based on MI or NMI.
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DISCUSSION

The concept of mutual information (MI) is a measure
originating from information theory or telecommunica-
tion systems; the concept of MI can also be used as a
similarity measure for two images. Normalized mutual
information (NMI) is also proposed as a robust similarity
measure for variation of an overlapped region of two
images. The MI- and NMI-based registration has become
the most investigated technique for medical image regis-
tration during recent years.14–23

In general, an optimization algorithm cannot guarantee
reaching a global optimum. The value can easily be
trapped in local optima. For that reason, the choice of
optimization strategy strongly influences the registration
results. Maes et al.33 investigated the performance of
six optimization algorithms: Simplex, Powell, steepest
gradient-descent, conjugate-gradient, quasi-Newton,
Levenberg-Marquardt. They reported that the Powell
algorithm yielded the best results and the Simplex algo-
rithm provided the second best results. Bernon et al.34 also
performed a comparative study of the Powell and Simplex
algorithms for multimodal surface matching. They re-
ported that the Simplex algorithm provided the best re-
sults. The Powell method optimizes each parameter using
an iterative 1D linear search, whereas the Simplex algo-
rithm generally optimizes all six parameters simulta-
neously. This study implemented an alternative approach
of a 3D registration technique including 2D image match-
ing as coarse pre-registration using the Simplex algo-
rithm. The 2D coarse pre-registration optimizes the only
three parameters in the transverse, sagittal and coronal
planes, respectively. Subsequently, all six parameters
were then optimized as fine registration, as shown in
Figure 1. Maes et al.14 and Lin et al.35 suggested that in-
plane parameters (dθz, dx, dy) could be determined more
quickly as independent of the initial conditions in brain
study. For that reason, we performed transverse plane
(dθz, dx, dy) matching first; sagittal plane (dθx, dy, dz)
matching and coronal plane (dθy, dx, dz) matching were
performed sequentially in the present method. The value
of dθy corresponds to the difference between the loading
angle of a patient into the MRI and SPECT scanner. It is
expected to be smaller than the value of dθx, as shown in
Figure 3. Therefore, performing coronal plane matching
after sagittal plane matching seemed reasonable. When
comparing the multiresolution approach and the present
method regarding its accuracy and precision with the
initial mismatch of ±10° and ±17.92 mm (Type-I), no
siginificant differences were shown between the two
methods (Table 2 and Table 3). Our simulation study
showed that biases in y-axis translation (dy) and z-axis
translation (dz) were slightly larger than that of x-axis
translation (dx) in both methods. These anisotropic biases
were probably introduced by the initial offset of the
simulation data. Considering the initial offset, the biases

would be isotropic in each direction. On the other hand,
the present method improved the accuracy and precision
in comparison with the multiresolution approach when
the initial mismatch was ±20° and ±40.32 mm (Type-II).
The success rate in the present method was 99.9%, which
was higher than 97.6% in the multiresolution approach.
An identical tendency was observed in results by the
NMI-based registration (100% for the present method,
97.4% for the multiresolution approach). Simulation re-
vealed that the 2D-coarse pre-registration strategy in the
present method provided a large capture range. We be-
lieve that the 2D pre-registration strategy can improve the
registration robustness to a large initial mismatch. We
focused on brain image registration using the rigid-body
transformation model in this study, but cardiac and ab-
dominal thorax image registration is a more complex
problem because of the non-rigid and mixed motions of
the heart and the thorax structures. The nonlinear registra-
tion based on MI or NMI has been reported to register
thorax MRI images.21,41 However, it is unclear whether
the present 2D pre-registration technique is effective or
not in cardiac and abdominal thorax image registration.

We compared the accuracy and precision of the NMI-
based registration with that of the MI-based registration.
As mentioned above, the NMI criterion is an insensitive
measure for overlapping regions of two images. For that
reason, the capture range of the NMI was expected to be
larger than that of the MI. However, we found almost
equivalent performance for MI and NMI registration
results. Grove et al.36 investigated the performance of
several registration algorithms (MI, NMI, Correlation
ratio, Woods criterion) for MRI/SPECT registration us-
ing realistic simulated SPECT data. They also observed
no significantly differences between the MI and NMI
results. Additional studies are required to prove the ro-
bustness of the NMI criterion with a larger initial mis-
match.

The accuracy and speed of registration generally present
a tradeoff relationship. However, the present method
showed only about a 1.2-fold increase in the average run
time in comparison with the multiresolution approach.
Pre-registration optimized the only three parameters with
small matrix size; these contributed to increasing the
computational efficiency. Pluim et al.37 reported that
interpolation-induced local minima were found on a reg-
istration function for translation in the slice direction.
Reslicing of the floating volume is affected by the inter-
polation effect. Consequently, the choice of method ap-
pears to have some influence on cost function smooth-
ness. Various interpolation schemes were proposed
including B-Spline interpolation,38 convolution-based in-
terpolation39 and partial volume interpolation.14 Meijering
et al.39 reported that spline interpolation is preferable
to convolution-based interpolation, but we employed
the simple trilinear interpolation scheme because of its
accuracy and relatively low computational cost. Tsao40
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investigated the effect of various interpolation schemes in
MRI/ECD-SPECT registration. He reported that interpo-
lation artifacts were unlikely to be a major source of
registration error unless used with an extreme number of
bins (e.g. > 128). Our simulation results also suggested a
negligible interpolation effect even with use of simple
trilinear interpolation.

CONCLUSION

We implemented improved 3D co-registration techniques
based on mutual information (MI) and normalized mutual
information (NMI), including a 2D image matching as the
coarse pre-registration. Accuracy and precision of the
present method were evaluated using simulated data and
clinical data. The present method with the 2D coarse pre-
registration strategy improved registration robustness.
The accuracy and precision of NMI were almost equiva-
lent to the MI in our simulation condition. The choice of
optimization strategy was more important than the choice
of the registration criterion (MI or NMI). Performance of
the present method offers sufficient accuracy and repro-
ducibility for MRI-SPECT registration.
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APPENDIX

The procedure of image registration based on MI and NMI
is illustrated in Figure 5. First, 2D histogram h(ai,bj) is
calculated from the two variables (e.g. ai = MRI, bj =
SPECT). The joint probability distribution p(ai,bj) can be
calculated simply by normalizing the 2D histogram as the
following equation:

p(ai,bj) =
h(ai,bj) , (A1)

           
h(ai,bj)

where bin represents the size of the 2D histogram. The
denominator of Eq. (A1) is a constant value, so that the
distribution pattern of p(ai,bj) is identical to that of h(ai,bj).
The marginal probability p(ai) and p(bj) can be calculated
by summing p(ai,bj) over b and a, respectively, as the
following equations:

p(ai) =      p(ai,bj), (A2)

p(bj) =      p(ai,bj). (A3)

Subsequently, the joint entropy and marginal entropy are
given by the following equations:

H(A,B) = −            p(ai,bj)log2 p(ai,bj), (A4)

H(A) =  −      p(ai)log2 p(ai), (A5)

H(B) = −       p(bj)log2 p(bj). (A6)

Mutual information (MI) and normalized mutual infor-
mation (NMI) can be calculated as follows:

MI(A,B) = H(A) + H(B) − H(A,B). (A7)

NMI(A,B) =
H(A) + H(B)

.
(A8)

H(A,B)

When the algorithm does not reach the maximum MI (or
NMI) value, the registration parameters are updated by
the optimization algorithm (e.g. Simplex algorithm). In
our method, three parameters are optimized in the 2D pre-
registration; all six parameters are optimized in the fine
registration. The floating image (SPECT image) is trans-
formed using the updated parameters, and the above
procedure is then repeated until convergence.
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