Three-dimensional stereotactic surface projection of brain perfusion SPECT improves diagnosis of Alzheimer's disease

Norinari Honda,*1 Kikuo Machida,*1 Tohru Matsumoto,*2 Hiroshi Matsuda,*3 Etsuko Imabayashi,*3 Jun Hashimoto,*4 Makoto Hosono,*5 Yusuke Inoue,*6 Kiyoshi Koizumi,*7 Shigeru Kosuda,*8 Toshimitsu Momose,*9 Yutaka Mori*10 and Motoo Oshima*11

***Department of Radiology, Saitama Medical Center, Saitama Medical School

****Popartment of Radiology, National Center Hospital for Mental, Nervous, and Muscular Disorders

***Department of Radiology, Faculty of Medicine, Keio University

***Department of Radiology, Faculty of Medicine, Kinki University

***Operatment of Radiology, Institute of Medical Science, University of Tokyo

***Popartment of Radiology, Tokyo Medical University

***Department of Radiology, National Defense Medical College

***Popartment of Radiology, Faculty of Medicine, University of Tokyo

***InDepartment of Radiology, Jikei University School of Medicine

***InDepartment of Radiology, Kasukabe Hospital

Objectives: Alzheimer's disease (AD) is diagnosed by either inspection of the brain perfusion SPECT, or three-dimensional stereotactic surface display (3D-SSP). The purpose was to compare diagnostic performances of these methods. **Methods:** Sixteen nuclear medicine physicians independently interpreted ^{99m}Tc-ECD SPECT in one session and SPECT with 3D-SSP in another session without clinical information for 50 studies of AD patients and 40 studies of healthy volunteers. Probabilities of AD were reported according to a subjective scale from 0% (normal) to 100% (definite AD). Receiver operating characteristics curves were generated to calculate areas under the ROC curves (Az's) for the inspection as well as for an automated diagnosis based on a mean Z value in the bilateral posterior cingulate gyri in a 3D-SSP template. **Results:** Mean Az for visual interpretation of SPECT alone (0.679 \pm 0.058) was significantly smaller than that for visual interpretation of both SPECT and 3D-SSP (0.778 \pm 0.060). Az for the automated diagnosis (0.883 \pm 0.037) was significantly greater than that for both modes of visual interpretation. **Conclusions:** 3D-SSP enhanced performance of the nuclear medicine physicians inspecting SPECT. Performance of the automated diagnosis exceeded that of the physicians inspecting SPECT with and without 3D-SSP.

Key words: brain perfusion SPECT, ROC analysis, Alzheimer's disease, image processing, automated diagnosis